Publications by authors named "Katri Pajusola"

Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor-1 (HIF-1), a key transcription factor in hypoxia, affects a wide range of adaptive cell functions. We examined the kinetics of endogenous HIF-1alpha during acute and chronic rejection, and the effect of exogenous HIF-1alpha in chronically rejecting rat cardiac allografts.

Methods: Heterotopic cardiac transplantations were performed between major MHC-mismatched Dark Agouti and Wistar-Furth rats.

View Article and Find Full Text PDF

Previous studies have shown that the maintenance of post-mitotic state is critical for the life-long survival of the inner ear mechanosensory cells, the hair cells. A general concept is that differentiated, post-mitotic cells rapidly die following cell cycle re-entry. Here we have compared the response of postnatal cochlear (auditory) and utricular (balance) hair cells to forced cell cycle reactivation and p53 up-regulation.

View Article and Find Full Text PDF

Objective: Chronic rejection is the main reason for the poor long-term survival of heart transplant recipients and is characterized by cardiac allograft inflammation, fibrosis, and arteriosclerosis. We examined the specific roles of different platelet-derived growth factor (PDGF) ligands (A-D)--potent mesenchymal cell mitogens--in rat cardiac allografts.

Methods And Results: PDGFR-alpha mRNA was upregulated in acutely-rejecting, and PDGF-A and PDGF-C mRNA in chronically-rejecting cardiac centhatn allografts.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF)-C and VEGF-D are composed of the receptor-binding VEGF homology domain and a carboxy-terminal silk homology domain that requires proteolytic cleavage for growth factor activation. Here, we explored whether the C-terminal heparin-binding domain of the VEGF(165) or VEGF(189) isoform also containing neuropilin-binding sequences could substitute for the silk homology domain of VEGF-C. Such VEGF-C/VEGF-heparin-binding domain chimeras were produced and shown to activate VEGF-C receptors, and, when expressed in tissues via adenovirus or adeno-associated virus vectors, stimulated lymphangiogenesis in vivo.

View Article and Find Full Text PDF

Angiopoietin-1 (Ang1) and Ang2 regulate the maintenance of normal vasculature by direct endothelial and indirect smooth muscle cell (SMC) effects. Dysfunction of vascular wall cells is considered central in cardiac allograft vasculopathy (CAV), where inflammation and arterial injury initiate subsequent intimal SMC proliferation. In this study, we investigated the effect of exogenous Ang1 and Ang2 in chronically rejecting rat cardiac allografts by intracoronary adeno-associated virus (AAV)-mediated gene transfer.

View Article and Find Full Text PDF

Therapeutic angiogenesis provides a potential alternative for the treatment of cardiovascular ischemic diseases. Vascular endothelial growth factor (VEGF) is an important component of the angiogenic response to ischemia. Here we used adeno-associated virus (AAV) gene delivery to skeletal muscle to examine the effects of VEGF vs.

View Article and Find Full Text PDF

Lymphangiogenic growth factors vascular endothelial growth factor (VEGF)-C and VEGF-D have been shown to promote lymphatic metastasis by inducing tumor-associated lymphangiogenesis. In this study, we have investigated how tumor cells gain access into lymphatic vessels and at what stage tumor cells initiate metastasis. We show that VEGF-C produced by tumor cells induced extensive lymphatic sprouting towards the tumor cells as well as dilation of the draining lymphatic vessels, suggesting an active role of lymphatic endothelial cells in lymphatic metastasis.

View Article and Find Full Text PDF

Angiopoietin 1 (Ang1), a ligand for the receptor tyrosine kinase Tie2, regulates the formation and stabilization of the blood vessel network during embryogenesis. In adults, Ang1 is associated with blood vessel stabilization and recruitment of perivascular cells, whereas Ang2 acts to counter these actions. Recent results from gene-targeted mice have shown that Ang2 is also essential for the proper patterning of lymphatic vessels and that Ang1 can be substituted for this function.

View Article and Find Full Text PDF

Platelet-derived growth factor-D (PDGF-D) is a recently characterized member of the PDGF family with unknown in vivo functions. We investigated the effects of PDGF-D in transgenic mice by expressing it in basal epidermal cells and then analyzed skin histology, interstitial fluid pressure, and wound healing. When compared with control mice, PDGF-D transgenic mice displayed increased numbers of macrophages and elevated interstitial fluid pressure in the dermis.

View Article and Find Full Text PDF

Background: Gene transfer offers considerable potential for altering vessel wall physiology and intervention in vascular disease. Therefore, there is great interest in developing optimal strategies and vectors for efficient, targeted gene delivery into a vessel wall.

Methods: We studied adeno-associated viruses (AAV; 9 x 10(8) to 4 x 10(9) TU/ml) for their usefulness to transduce rabbit arteries in vivo in comparison with adenoviruses (Adv; 1 x 10(9) to 1 x 10(10) pfu/ml).

View Article and Find Full Text PDF

Macrophage scavenger receptors (MSR) promote atherosclerotic lesion formation, and modulation of MSR activity has been shown to influence atherosclerosis. Soluble receptors are effective in inhibiting receptor-mediated functions in various diseases. We have generated a secreted macrophage scavenger receptor (sMSR) that consists of the bovine growth hormone signal sequence and the human MSR A I extracellular domains.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are promising vectors for various gene therapy applications due to their long-lasting transgene expression and wide spectrum of target cells. Recently, however, it has become apparent that there are considerable differences in the efficiencies of transduction of different cell types by AAVs. Here, we analyzed the efficiencies of transduction and the transport mechanisms of AAV type 2 (AAV-2) in different cell types, emphasizing endothelial cells.

View Article and Find Full Text PDF

Recent work from many laboratories has demonstrated that the vascular endothelial growth factor-C/VEGF-D/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and that mutations of the Vegfr3 gene are associated with hereditary lymphedema. Furthermore, VEGF-C gene transfer to the skin of mice with lymphedema induced a regeneration of the cutaneous lymphatic vessel network. However, as is the case with VEGF, high levels of VEGF-C cause blood vessel growth and leakiness, resulting in tissue edema.

View Article and Find Full Text PDF

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are important regulators of blood and lymphatic vessel growth and vascular permeability. The VEGF-C/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and heterozygous inactivating missense mutations of the VEGFR-3 gene are associated with hereditary lymphedema. However, VEGF-C can have potent effects on blood vessels because its receptor VEGFR-3 is expressed in certain blood vessels and because the fully processed form of VEGF-C also binds to the VEGFR-2 of blood vessels.

View Article and Find Full Text PDF