Publications by authors named "Katrein Sauer"

Article Synopsis
  • Failure-resistant designs in the skeletal structure of the northern pike are essential for withstanding the rapid loading during their unique feeding mechanism.
  • The cleithrum bone, vital for jaw movement, consists of layered anisotropic collagen fibers that enhance strength and damage tolerance.
  • Analysis through various imaging techniques reveals how these slender, low-density bones remain resilient despite lacking biological repair mechanisms, making them capable of enduring repeated stress from feeding activities.
View Article and Find Full Text PDF

X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles.

View Article and Find Full Text PDF

Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized.

View Article and Find Full Text PDF

We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing.

View Article and Find Full Text PDF

Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself.

View Article and Find Full Text PDF

Molecular doping: The standard model for molecular p-doping of organic semiconductors (OSCs) assumes integer charge transfer between OSC and dopant. This is in contrast to an alternative model based on intermolecular complex formation instead. By systematically varying the acceptor strength it was possible to discriminate the two models.

View Article and Find Full Text PDF