Publications by authors named "Katofiasc M"

One cannot survive without regularly urinating and defecating. People with neurologic injury (spinal cord injury, traumatic brain injury, stroke) or disease (multiple sclerosis, Parkinson's disease, spina bifida) and many elderly are unable to voluntarily initiate voiding. The great majority of them require bladder catheters to void urine and "manual bowel programs" with digital rectal stimulation and manual extraction to void stool.

View Article and Find Full Text PDF

The feasibility of eliciting defecation and urination after intranasal (IN) or sublingual (SL) delivery of a small peptide NK2 receptor agonist, [Lys, MeLeu, Nle]-NKA, was examined using prototype formulations in dogs. In anesthetized animals, administration of 100 or 300 µg/kg IN or 2.0-6.

View Article and Find Full Text PDF

Acute administration of [Lys5,Me,Leu9,Nle10]-NKA(4-10) (LMN-NKA) produces contractions of the detrusor and rectum with voiding in intact and acutely spinal cord injured (SCI) rats. In the current study, the ability of LMN-NKA (10 μg/kg or 100 μg/kg, subcutaneous [SC], twice a day [bid]) or vehicle to induce voiding and defecation in chronic SCI rats was examined across 30 days. After the last day of administration, voiding response rates and bladder pressure (BP) responses to LMN-NKA (intravenous [IV] and SC) were evaluated under anesthesia.

View Article and Find Full Text PDF

The effects of the neurokinin NK2 receptor agonist [Lys,MeLeu,Nle]-NKA (LMN-NKA) on bladder and colorectal function were examined in minipigs. In anesthetized animals, subcutaneous (SC) administration of 30-100 μg/kg increased peak bladder and colorectal pressures. Increases in bladder and colorectal pressure were inhibited by a 15 min pretreatment with the NK2 receptor antagonist GR 159897 (1 mg/kg intravenously (IV)).

View Article and Find Full Text PDF

The effects of the tachykinin NK2 receptor agonist LMN-NKA ([Lys,MeLeu,Nle]-NKA) on colorectal and arterial blood pressure were examined in anesthetized macaques. Intravenous (IV) administration of 1-100 μg/kg caused dose-related increases in colorectal pressure up to 120 mmHg above baseline, and area under the curve (AUC) up to 24,987 mmHg*s. This was accompanied at all doses by transient hypotension, with up to 26% reduction in mean arterial pressure (MAP) from baseline.

View Article and Find Full Text PDF

Tachykinin neurokinin 2 (NK2) receptor agonists may have potential to alleviate clinical conditions associated with bladder and gastrointestinal underactivity by stimulating contraction of visceral smooth muscle. The ability of [Lys,MeLeu,Nle]-neurokinin A (LMN-NKA) to elicit micturition and defecation was examined after repeated administration in groups of 2-10 conscious dogs. Administration of 10-100 g/kg, i.

View Article and Find Full Text PDF

Tachykinin NK2 receptor (NK2R) agonists have potential to alleviate clinical conditions associated with bladder and gastrointestinal under activity. The effects of agonists with differing selectivity for NK2R over NK1Rs on colorectal, bladder, and cardiovascular function were examined in anesthetized dogs. Intravenous (IV) administration of NKA, LMN-NKA ([Lys,MeLeu,Nle]-NKA), and [β-Ala]-NKA caused a dose-related increase in colorectal pressure (up to 98 mmHg) that was blocked by pretreatment with the NK2R antagonist GR 159897 (1 mg/kg), and hypotension (decrease in mean arterial pressure of ~40 mmHg) that was blocked by the NK1R antagonist CP-99,994 (1 mg/kg).

View Article and Find Full Text PDF

The suitability of various neurokinin-2 (NK2) receptor agonists and routes of administration to elicit on-demand voiding of the bladder and bowel, as future therapy for individuals with spinal cord injury, was examined using a rat model. The current study examined the feasibility of alternative routes of administration, which are more practical for clinical use than intravenous (IV) administration. Voiding and isovolumetric cystometry were recorded in anesthetized, acutely spinalized, female rats after IV, subcutaneous (SC), intramuscular (IM), intranasal (IN), or sublingual (SL) administration of [Lys,MeLeu,Nle]-NKA (LMN-NKA).

View Article and Find Full Text PDF

The purpose of this study was to determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK receptor) agonist, Lys, MeLeu, Nle-NKA (LMN-NKA). Cystometry and colorectal pressure measurements were performed in urethane-anesthetized, intact, and acutely spinalized female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity.

View Article and Find Full Text PDF

Calcium-activated potassium channels are attractive targets for the development of therapeutics for overactive bladder. In the current study, we addressed the role of calcium-activated potassium channels of small (SK; K(Ca)2) and intermediate (IK; K(Ca)3) conductance in bladder function pharmacologically. We identified and characterized a novel positive modulator of SK/IK channels, 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591).

View Article and Find Full Text PDF

The excitatory neurotransmitter glutamate has been implicated in both migraine and persistent pain. The identification of the kainate receptor GLU(K5) in dorsal root ganglia, the dorsal horn, and trigeminal ganglia makes it a target of interest for these indications. We examined the in vitro and in vivo pharmacology of the competitive GLU(K5)-selective kainate receptor antagonist LY466195 [(3S,4aR,6S,8aR)-6-[[(2S)-2-carboxy-4,4-difluoro-1-pyrrolidinyl]-methyl]decahydro-3-isoquinolinecarboxylic acid)], the most potent GLU(K5) antagonist described to date.

View Article and Find Full Text PDF

Amino diacid 3, a highly selective competitive GluR5 kainate receptor antagonist, exhibited high GluR5 receptor affinity and selectivity over other glutamate receptors. Its diethyl ester prodrug 4 was orally active in two models of migraine: the neurogenic dural plasma protein extravasation model and the nucleus caudalis c-fos expression model. These data suggest that a GluR5 kainate receptor antagonist might be an efficacious antimigraine therapy with a novel mechanism of action.

View Article and Find Full Text PDF

In the present study, the role of 5-HT(1A) receptors in control of lower urinary tract function in cats was examined using 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) as agonists and WAY100635 and LY206130 as antagonists. Bladder function was assessed using cystometric infusion of saline or 0.5% acetic acid to produce bladder irritation.

View Article and Find Full Text PDF

Previous studies showed that the dual serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE) reuptake inhibitor, duloxetine, increases bladder capacity and urethral sphincter electromyographic (EMG) activity in a cat model of acetic acid-induced bladder irritation. The present study aimed to determine the relative importance of 5-HT versus NE reuptake inhibition for mediating these effects by examining drugs that are selective for either the 5-HT or NE system or both. Similar to duloxetine, venlafaxine (0.

View Article and Find Full Text PDF

Purpose: The purpose of the present study was to determine the peripheral neural pathways, spinal distribution, sizes, and peptide transmitter content of primary afferent and autonomic efferent neurons that innervate the prostate gland.

Methods: Retrograde transport of the fluorescent dye "fast blue" (injected into the prostate gland) was combined with neurotransmitter immunohistochemistry. Lesions of the pelvic and pudendal nerve were used to determine the peripheral neural pathways.

View Article and Find Full Text PDF

Because all three components of lower urinary tract control (parasympathetic, sympathetic and somatic) are intimately associated with serotonin (5-hydroxytryptamine [5HT])- and norepinephrine (NE)- containing terminals and receptors, in the present study, we examined the effects of increasing extracellular levels of 5HT and NE with duloxetine, a 5HT and NE reuptake inhibitor, on lower urinary tract function under "normal" or nonirritated conditions (transvesical infusion of saline) and in a model of bladder irritation (i.e., transvesical infusion of 0.

View Article and Find Full Text PDF