Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is a highly aggressive soft tissue malignancy that predominantly affects children. The main subtypes are alveolar RMS (ARMS) and embryonal RMS (ERMS) and the two show an impaired muscle differentiation phenotype. One pathway involved in muscle differentiation is WNT signaling.
View Article and Find Full Text PDFA prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.
View Article and Find Full Text PDFIntroduction: In-depth genomic characterization of thymic epithelial tumors (TETs), comprising thymomas and thymic carcinomas (TCs), failed to identify targetable mutations and suggested unique biology of TETs, including KIT expression in most TCs. Recently, tuft cell-like medullary thymic epithelial cells were identified in the murine thymus, and our reanalysis of the published gene expression data revealed that these cells express KIT. In addition, recently, a minor subset of SCLCs with tuft cell-like features was described.
View Article and Find Full Text PDFThe thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues.
View Article and Find Full Text PDFChitinase-like proteins (CLP) are chitin-binding proteins that lack chitin hydrolyzing activity, but possess cytokine-like and growth factor-like properties, and play crucial role in intercellular crosstalk. Both human and mice express two members of CLP family: YKL-40 and stabilin-1 interacting chitinase-like protein (SI-CLP). Despite numerous reports indicating the role of YKL-40 in the support of angiogenesis, tumor cell proliferation, invasion and metastasis, the role of its structurally related protein SI-CLP in cancer was not reported.
View Article and Find Full Text PDFRhabdomyosarcomas (RMS) are rare and often lethal diseases. It is assumed that the tumor microenvironment (TME) of RMS exerts an immunosuppressive function, but there is currently no systematic analysis of the immune cells infiltrating sarcoma tissue. Focusing on two common types of RMS (alveolar [RMA] and embryonal [RME]), we performed a comprehensive immunohistochemical analysis of tumor-infiltrating immune cells in the TME.
View Article and Find Full Text PDFThe PDLIM2 protein regulates stability of transcription factors including NF-κB and STATs in epithelial and hemopoietic cells. PDLIM2 is strongly expressed in certain cancer cell lines that exhibit an epithelial-to-mesenchymal phenotype, and its suppression is sufficient to reverse this phenotype. PDLIM2 supports the epithelial polarity of nontransformed breast cells, suggesting distinct roles in tumor suppression and oncogenesis.
View Article and Find Full Text PDFBackground: Biliary tract cancers (BTCs) have a poor prognosis. BTCs are characterized by a prominent desmoplastic reaction which possibly contributes to the aggressive phenotype of this tumor. The desmoplastic reaction includes excessive production and deposition of extracellular matrix proteins such as periostin, secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1, as well as accumulation of α-smooth muscle actin-positive cancer-associated fibroblasts and immune cells, secreting growth factors and cytokines including transforming growth factor (TGF)-β.
View Article and Find Full Text PDFThe development of skeletal muscle from immature precursors is partially driven by canonical WNT/β-catenin signaling. Rhabdomyosarcomas (RMS) are immature skeletal muscle-like, highly lethal cancers with a variably pronounced blockade of muscle differentiation. To investigate whether canonical β-catenin signaling in RMS is involved in differentiation and aggressiveness of RMS, we analyzed the effects of WNT3A and of a siRNA-mediated or pharmacologically induced β-catenin knock-down on proliferation, apoptosis and differentiation of embryonal and alveolar RMS cell lines.
View Article and Find Full Text PDFWe report here the sequence and functional characterization of a recombinantly expressed autoantibody (mAb 131) previously isolated from a myasthenia gravis patient by immortalization of thymic B cells using Epstein-Barr virus and TLR9 activation. The antibody is characterized by a high degree of somatic mutations as well as a 6 amino acid insertion within the VHCDR2. The recombinant mAb 131 is specific for the γ-subunit of the fetal AChR to which it bound with sub-nanomolar apparent affinity, and detected the presence of fetal AChR on a number of rhabdomyosarcoma cell lines.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells.
View Article and Find Full Text PDFAims: Thymomas and thymic squamous cell carcinomas (TSQCCs) are rare thymic epithelial tumours. Data on angiogenesis and vascular phenotype in these tumours are limited, and no study has taken histological World Health Organization (WHO) subtypes into account. The aim of this study was to compare vascularization, pericytes coverage and expression of angiogenic growth factors in different WHO-defined subtypes of thymoma METHODS AND RESULTS: Vascular density, diameter and architecture and expression of α-smooth muscle actin (SMA), platelet-derived growth factor (PDGF) receptor-β (PDGFRβ), vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) were investigated in WHO type A, AB, B1, B2 and B3 thymomas and TSQCCs, by the use of immunostaining, quantitative morphometry, and tumour vessel isolation by trypsin digestion.
View Article and Find Full Text PDFPhotobiomodulation (PBM) with blue light induces a biphasic dose response curve in proliferation of immortalized human keratinocytes (HaCaT), with a maximum anti-proliferative effect reached with 30min (41.4 J/cm2). The aim of this study was to test the photobiomodulatory effect of 41.
View Article and Find Full Text PDFStabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of "unwanted-self" components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma.
View Article and Find Full Text PDFMyasthenia gravis (MG) is caused by autoantibodies against the neuromuscular junction of striated muscle. Most MG patients have autoreactive T- and B-cells directed to the acetylcholine receptor (AChR). To achieve immunologic tolerance, developing thymocytes are normally eliminated after recognition of self-antigen-derived peptides.
View Article and Find Full Text PDFIn this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.
View Article and Find Full Text PDFCellular immunotherapy may provide a strategy to overcome the poor prognosis of metastatic and recurrent rhabdomyosarcoma (RMS) under the current regimen of polychemotherapy. Because little is known about resistance mechanisms of RMS to cytotoxic T cells, we investigated RMS cell lines and biopsy specimens for expression and function of immune costimulatory receptors and anti-apoptotic molecules by RT-PCR, Western blot analysis, IHC, and cytotoxicity assays using siRNA or transfection-modified RMS cell lines, together with engineered RMS-directed cytotoxic T cells specific for the fetal acetylcholine receptor. We found that costimulatory CD80 and CD86 were consistently absent from all RMSs tested, whereas inducible T-cell co-stimulator ligand (ICOS-L; alias B7H2) was expressed by a subset of RMSs and was inducible by tumor necrosis factor α in two of five RMS cell lines.
View Article and Find Full Text PDFExpert Opin Ther Targets
February 2013
Introduction: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS.
View Article and Find Full Text PDFAims. Chimeric T cells directed to the γ-subunit of the fetal acetylcholine receptor (fAChR) produce large amounts of interferon-γ (IFNγ) on coculture with fAChR-expressing rhabdomyosarcoma (RMS) cells prior to RMS cell death. The aim of this study was to elucidate whether IFNγ blocks proliferation and survival of RMS cells and modulates expression of genes with relevance for cytotoxicity of chimeric T cells.
View Article and Find Full Text PDF