RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif.
View Article and Find Full Text PDFActivation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity.
View Article and Find Full Text PDFChanges in transcription factor levels, epigenetic status, splicing kinetics and mRNA degradation can each contribute to changes in the mRNA dynamics of a gene. We present a novel method to identify which of these processes is changed in cells in response to external signals or as a result of a diseased state. The method employs a mathematical model, for which the kinetics of gene regulation, splicing, elongation and mRNA degradation were estimated from experimental data of transcriptional dynamics.
View Article and Find Full Text PDFTranscription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping.
View Article and Find Full Text PDFEukaryotic transcription is a dynamic process relying on a large number of proteins. By measuring the cycling expression of the pyruvate dehydrogenase kinase 4 gene in human cells, we constructed a detailed stochastic model for single-gene transcription at the molecular level using realistic kinetics for diffusion and protein complex dynamics. We observed that gene induction caused an approximate 60 min periodicity of several transcription related processes: first, the covalent histone modifications and presence of many regulatory proteins at the transcription start site; second, RNA polymerase II activity; third, chromatin loop formation; and fourth, mRNA accumulation.
View Article and Find Full Text PDFSystems Biology is the science that aims to understand how biological function absent from macromolecules in isolation, arises when they are components of their system. Dedicated to the memory of Reinhart Heinrich, this paper discusses the origin and evolution of the new part of systems biology that relates to metabolic and signal-transduction pathways and extends mathematical biology so as to address postgenomic experimental reality. Various approaches to modeling the dynamics generated by metabolic and signal-transduction pathways are compared.
View Article and Find Full Text PDF