With the global geriatric population expected to reach 1.5 billion by 2050, different assistive technologies have been developed to tackle age-associated movement impairments. Lower-limb robotic exoskeletons have the potential to support frail older adults while promoting activities of daily living, but the need for crutches may be challenging for this population.
View Article and Find Full Text PDFTo achieve human-like behaviour during speech interactions, it is necessary for a humanoid robot to estimate the location of a human talker. Here, we present a method to optimize the parameters used for the direction of arrival (DOA) estimation, while also considering real-time applications for human-robot interaction scenarios. This method is applied to binaural sound source localization framework on a humanoid robotic head.
View Article and Find Full Text PDFIntroduction: Age simulation suits are increasingly used in health care education. However, empirical evidence that quantifies the simulated performance losses in established geriatric tests and compares those declines with reference data of older adults is scarce.
Methods: In a standardized lab setting, we compared performance of = 61 participants (46 middle-aged, 15 young adults) with and without age simulation suit, for example in the Timed Up and Go Test (+dual task), Short Physical Performance Battery, grip strength, and 30-Second-Chair- Standing Test.
We investigate the distribution of muscle signatures of human hand gestures under Dynamic Time Warping. For this we present a k-Nearest-Neighbors classifier using Dynamic Time Warping for the distance estimate. To understand the resulting classification performance, we investigate the distribution of the recorded samples and derive a method of assessing the separability of a set of gestures.
View Article and Find Full Text PDFThis study describes the software methodology designed for systematic benchmarking of bipedal systems through the computation of performance indicators from data collected during an experimentation stage. Under the umbrella of the European project Eurobench, we collected approximately 30 protocols with related testbeds and scoring algorithms, aiming at characterizing the performances of humanoids, exoskeletons, and/or prosthesis under different conditions. The main challenge addressed in this study concerns the standardization of the scoring process to permit a systematic benchmark of the experiments.
View Article and Find Full Text PDFTo enable the application of humanoid robots outside of laboratory environments, the biped must meet certain requirements. These include, in particular, coping with dynamic motions such as climbing stairs or ramps or walking over irregular terrain. Sit-to-stand transitions also belong to this category.
View Article and Find Full Text PDFBuzzwire tasks are often used as benchmarks and as training environments for fine motor skills and high precision path following. These tasks require moving a wire loop along an arbitrarily shaped wire obstacle in a collision-free manner. While there have been some demonstrations of buzzwire tasks with robotic manipulators using reinforcement learning and admittance control, there does not seem to be any examples with humanoid robots.
View Article and Find Full Text PDFFront Sports Act Living
March 2022
Mechanical stability criteria are able to explain balance and robustness during simple motions, however, humans have learned many complex balancing tasks for which science lacks a thorough understanding. In this work, we analyzed slackline balancing to define general balance performance indicators. The goal is to not only measure slackline expertise, but to be able to quantify stability during any balance task.
View Article and Find Full Text PDFLower-limb exoskeletons have been created for different healthcare needs, but no research has been done on developing a proper protocol for users to get accustomed to moving with one. The user manuals provided also do not include such instructions. A pre-test was conducted with the TWIN (IIT), which is a lower-limb exoskeleton made for persons with spinal cord injury.
View Article and Find Full Text PDFBackground: Despite strong evidence that walking speed and forward propulsion decline with increasing age, their relationship is still poorly understood. While changes in the ankle and hip mechanics have been described, few studies have reported the effect of ageing on the whole leg's contribution to propulsion.
Research Question: The aim of this study was to investigate age-related changes in the work performed by the leg on the center of mass (COM) push-off power during walking in adults aged 20-86 years.
Although wearable robotic systems are designed to reduce the risk of low-back injury, it is unclear how effective assistance is, compared to improvements in lifting technique. We use a two-factor block study design to simulate how effective exoskeleton assistance and technical improvements are at reducing the risk of low-back injury when compared to a typical adult lifting a box. The effects of assistance are examined by simulating two different models: a model of just the human participant, and a model of the human participant wearing the SPEXOR exoskeleton.
View Article and Find Full Text PDFOver the last few years, the Leap Motion Controller™ (LMC) has been increasingly used in clinical environments to track hand, wrist and forearm positions as an alternative to the gold-standard motion capture systems. Since the LMC is marker-less, portable, easy-to-use and low-cost, it is rapidly being adopted in healthcare services. This paper demonstrates the comparison of finger kinematic data between the LMC and a gold-standard marker-based motion capture system, Qualisys Track Manager (QTM).
View Article and Find Full Text PDFFront Sports Act Living
October 2020
Many older adults suffer injuries due to falls as the ability to safely move between sitting and standing degrades. Unfortunately, while existing measures describe sit-to-stand (STS) performance, they do not directly measure the conditions for balance. To gain insight into the effect of age on STS balance, we analyzed how far 8 older and 10 young adults strayed from a state of static balance and how well each group maintained dynamic balance.
View Article and Find Full Text PDFFrom preschool age, humans tend to imitate causally irrelevant actions-they over-imitate. This study investigated whether children over-imitate even when they know a more efficient task solution and whether they imitate irrelevant actions equally from a human compared to a robot model. Five-to-six-year-olds (N = 107) watched either a robot or human retrieve a reward from a puzzle box.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2020
Benchmarks have long been used to verify and compare the readiness level of different technologies in many application domains. In the field of wearable robots, the lack of a recognized benchmarking methodology is one important impediment that may hamper the efficient translation of research prototypes into actual products. At the same time, an exponentially growing number of research studies are addressing the problem of quantifying the performance of robotic exoskeletons, resulting in a rich and highly heterogeneous picture of methods, variables and protocols.
View Article and Find Full Text PDFFront Neurorobot
August 2019
Computer simulation can be used to predict human walking motions as a tool of basic science, device design, and for surgical planning. One the challenges of predicting human walking is accurately synthesizing both the movements and ground forces of the stance foot. Though the foot is commonly modeled as a viscoelastic element, rigid foot-ground contact models offer some advantages: fitting is reduced to a geometric problem, and the numerical stiffness of the equations of motion is similar in both swing and stance.
View Article and Find Full Text PDFMusculoskeletal models are made to reflect the capacities of the human body in general, and often a specific subject in particular. It remains challenging to both model the musculoskeletal system and then fit the modelled muscles to a specific human subject. We present a reduced muscle model, a planar musculoskeletal model, and a fitting method that can be used to find a feasible set of active and passive muscle parameters for a specific subject.
View Article and Find Full Text PDFThe principles underlying smooth and effortless human walking while maintaining stability as well as the ability to quickly respond to unexpected perturbations result from a plethora of well-balanced parameters, most of them yet to be determined. In this paper, we investigate criteria that may be useful for benchmarking stability properties of human walking. We perform dynamic reconstructions of human walking motions of unimpaired subjects and subjects walking with transfemoral prostheses from motion capture recordings using optimal control.
View Article and Find Full Text PDFComputational models of the human body coupled with optimization can be used to predict the influence of variables that cannot be experimentally manipulated. Here, we present a study that predicts the motion of the human body while lifting a box, as a function of flexibility of the hip and lumbar joints in the sagittal plane. We modeled the human body in the sagittal plane with joints actuated by pairs of agonist-antagonist muscle torque generators, and a passive hamstring muscle.
View Article and Find Full Text PDFThe choice of the cost-function for predicting muscle forces during a movement remains a challenge, especially in patients with neuromuscular disorders. Forward dynamics-based optimisations mainly track joint kinematics or torques, combined with a least-excitation criterion. Tracking marker trajectories and/or electromyography (EMG) has rarely been proposed.
View Article and Find Full Text PDFSit to stand (STS) transfers form a challenging type of motion, in particular for geriatric patients. Physical assistive devices that are built to enhance the mobility of this class of patients therefore must especially be able to support STS transfers. This paper presents a method to predict geriatric STS movements and compute the best possible actions by external devices to support these movements.
View Article and Find Full Text PDFPredicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort.
View Article and Find Full Text PDFThis paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject's foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes.
View Article and Find Full Text PDF