Publications by authors named "Katja Knapp"

Chlamydia trachomatis (Ct) is the most common cause for bacterial sexually transmitted infections (STIs) worldwide with a tremendous impact on public health. With the aim to unravel novel targets of the chlamydia life cycle, we screen a compound library and identify 28 agents to significantly reduce Ct growth. The known anti-infective agent pentamidine-one of the top candidates of the screen-shows anti-chlamydia activity in low concentrations by changing the metabolism of host cells impairing chlamydia growth.

View Article and Find Full Text PDF

The current prevention efforts for STIs, HIV and viral hepatitis in the WHO European Region, especially in the Central and Eastern subregions, are hindered by healthcare disparities, data gaps, and limited resources. In this comprehensive narrative review, we aim to highlight both achievements and persisting challenges while also exploring new developments that could significantly impact the prevention of these infections in the near future. While pre-exposure prophylaxis (PrEP) for HIV has been broadly approved and implemented in 38 out of 53 countries in the region, challenges remain, including cost, limited licensing, and incomplete adherence.

View Article and Find Full Text PDF

Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues.

View Article and Find Full Text PDF

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability.

View Article and Find Full Text PDF

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver.

View Article and Find Full Text PDF