Publications by authors named "Katja Kettler"

In respect to the high number of released nanomaterials and their highly variable properties, novel grouping approaches are required based on the effects of nanomaterials. Proper grouping calls for a combination of an experimental setup with a higher number of structurally similar nanomaterials and for employing integrated omics approaches to identify the mode of action. Here, we analyzed the effects of seven well-characterized NMs comprising different chemical compositions, sizes and chemical surface modifications on the rat alveolar macrophage cell line NR8383.

View Article and Find Full Text PDF

The project nanoGRAVUR (BMBF, 2015-2018) developed a framework for grouping of nanomaterials. Different groups may result for each of the three distinct perspectives of occupational, consumer and environmental safety. The properties, methods and descriptors are harmonised between the three perspectives and are based on: Tier 1 intrinsic physico-chemical properties (what they are) or GHS classification of the non-nano-form (human tox, ecotox, physical hazards); Tier 2 extrinsic physico-chemical properties, release from nano-enabled products, in vitro assays with cells (where they go; what they do); Tier 3 case-specific tests, potentially in vivo studies to substantiate the similarity within groups or application-specific exposure testing.

View Article and Find Full Text PDF

Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered.

View Article and Find Full Text PDF

The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.

View Article and Find Full Text PDF

Due to increasing application, release of nanoparticles (NPs) and nanomaterials into the environment becomes likely. Knowledge about NP uptake in organisms is crucial for risk assessment including estimations on the behavior of NPs based on their physicochemical properties. In the present study, the authors have applied current scientific knowledge to construct a mathematical model, which estimates the transport of NPs through a model biological membrane.

View Article and Find Full Text PDF

The increased application of nanoparticles (NPs) is increasing the risk of their release into the environment. Although many toxicity studies have been conducted, the environmental risk is difficult to estimate, because uptake mechanisms are often not determined in toxicity studies. In the present study, the authors review dominant uptake mechanisms of NPs in cells, as well as the effect of NP properties, experimental conditions, and cell type on NP uptake.

View Article and Find Full Text PDF

Less toxic drugs are needed to combat the human parasite Trypanosoma cruzi (Chagas's disease). One novel target for antitrypanosomal drug design is farnesyltransferase. Several farnesyltransferase inhibitors based on the benzophenone scaffold were assayed in vitro and in vivo with the parasite.

View Article and Find Full Text PDF

Water solubility was previously found to be essential for in vivo-antimalarial activity of a novel type of benzophenone-based farnesyltransferase inhibitors. Introduction of a alpha-amino group into the phenylacetic acid substructure provided more soluble compounds with high farnesyltransferase inhibitory activity. The in vitro-antimalarial activity was detrimentally influenced by this structural modification.

View Article and Find Full Text PDF

We have designed the nitrophenylfurylacryl-substituted benzophenone 4f as a non-thiol farnesyltransferase inhibitor utilizing a novel aryl binding site of farnesyltransferase. Variation of the 2-acylamino substituent at the benzophenone core structure of our initial lead 4f yielded several non-thiol farnesyltransferase inhibitors with improved activity. These compounds display activity in the low nanomolar range.

View Article and Find Full Text PDF

We have demonstrated that the p-trifluoromethylphenylpropionylamino residue at the 2-position of the core structure leads to an active benzophenone-type anti-malarial agent. The attempt to improve water solubility by introduction of an amino group into the alpha-position of the arylpropionyl residue resulted in decreased activity.

View Article and Find Full Text PDF

We have developed the [5-(4-nitrophenyl)-2-furyl]acrylic acid substituted benzophenone 4g as a novel lead for anti-malarial agents. Here, we demonstrated that the acyl residue at the 2-amino group of the benzophenone core structure has to be a phenylacetic acid substructure substituted in its para-position with methyl or other substituents of similar size. The trifluoromethyl substituted derivative displayed an IC(50) of 47 nM against the multi-drug resistant Plasmodium falciparum strain Dd2.

View Article and Find Full Text PDF

We have described 5-(4-propoxycinnamoylamino)-2-(4-tolylacetylamino)benzophenone 6e as a novel lead for anti-malarial agents. Anti-malarial activity of these 5-(4-propoxycinnamoylamino)benzophenones proved to be quite sensitive against variations of the acyl substituent at the 2-amino group. Best activity was obtained with phenylacetic acid moieties carrying small substituents in the para-position.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionspofdtc5vdgl5hetra9v7ierfcrtn2i7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once