Children with dyslexia often face difficulties in learning foreign languages, which is reflected as weaker neural activation. However, digital language-learning applications could support learning-induced plastic changes in the brain. Here we aimed to investigate whether plastic changes occur in children with dyslexia more readily after targeted training with a digital language-learning game or similar training without game-like elements.
View Article and Find Full Text PDFDigital games may benefit children's learning, yet the factors that induce gaming benefits to cognition are not well known. In this study, we investigated the effectiveness of digital game-based learning in children by comparing the learning of foreign speech sounds and words in a digital game or a non-game digital application. To evaluate gaming-induced plastic changes in the brain, we used the mismatch negativity (MMN) brain response that reflects the access to long-term memory representations.
View Article and Find Full Text PDFTo determine the best techniques to teach children foreign words, we compared the effectiveness of four different learning tasks on their foreign-word learning (i.e., learning word forms and word meanings).
View Article and Find Full Text PDFDyslexia is characterized by poor reading skills, yet often also difficulties in second-language learning. The differences between native- and second-language speech processing and the establishment of new brain representations for spoken second language in dyslexia are not, however, well understood. We used recordings of the mismatch negativity component of event-related potential to determine possible differences between the activation of long-term memory representations for spoken native- and second-language word forms in Finnish-speaking 9-11-year-old children with or without dyslexia, studying English as their second language in school.
View Article and Find Full Text PDFThe ability to predict future events in the environment and learn from them is a fundamental component of adaptive behavior across species. Here we propose that inferring predictions facilitates speech processing and word learning in the early stages of language development. Twelve- and 24-month olds' electrophysiological brain responses to heard syllables are faster and more robust when the preceding word context predicts the ending of a familiar word.
View Article and Find Full Text PDF