Background: In recent years various studies showed, that hepatitis E virus (HEV) is a growing public health problem in many developed countries. Therefore, HEV infections might bear a transmission risk by blood transfusions. The clinical relevance still requires further investigations.
View Article and Find Full Text PDFBackground: Next-generation sequencing (NGS) has changed genomics significantly. More and more applications strive for sequencing with different platforms. Now, in 2012, after a decade of development and evolution, NGS has been accepted for a variety of research fields.
View Article and Find Full Text PDFBackground: Human leukocyte antigen matching at allelic resolution is proven clinically significant in hematopoietic stem cell transplantation, lowering the risk of graft-versus-host disease and mortality. However, due to the ever growing HLA allele database, tissue typing laboratories face substantial challenges. In light of the complexity and the high degree of allelic diversity, it has become increasingly difficult to define the classical transplantation antigens at high-resolution by using well-tried methods.
View Article and Find Full Text PDFHow cells coordinate the immune system activities is important for potentially life-saving organ or stem cell transplantations. Polymorphic immunoregulatory genes, many of them located in the human major histocompatibility complex, impact the process and assure the proper execution of tolerance-versus-activity mechanisms. In haematopoietic stem cell transplantation, on the basis of fully human leukocyte antigen (HLA)-matched donor-recipient pairs, adverse effects like graft versus leukaemia and graft versus host are observed and difficult to handle.
View Article and Find Full Text PDFTransplantation and, notably, hematopoietic stem cell transplantation require high-resolution human leukocyte antigen (HLA) typing and, because of the heterozygous genomic DNA samples, are dependent on clonal analytical methods. High-resolution HLA typing is a necessity for accomplishing the best possible histocompatibility match between donor and recipient, because mismatches strongly increase the risk of severe acute graft-versus-host disease. We describe the development and first application in a clinical setting of a novel, HLA sequence-based typing method by exploring the next-generation sequencing technology as provided by the Genome Sequencer FLX system (Roche/454 Life Sciences, Branford, CT).
View Article and Find Full Text PDFBackground: Hematopoietic stem-cell transplantation is a well-established treatment in various hematologic malignancies, but the outcome depends on disease relapse, infections, and the development and severity of acute and chronic graft-versus-host disease. Some evidence has revealed an important role for the nonclassical major histocompatibility complex class I molecules in transplantation, most notably human leukocyte antigen (HLA)-E. This study evaluates the impact of HLA-E alleles on transplantation outcome after HLA-matched allogeneic HSCT.
View Article and Find Full Text PDFBackground: Aberrant RHD alleles leading to a reduced expression of D antigen on the red blood cell (RBC) surface may be mistyped as D- by serology. To quantify the occurrence of weak D, DEL, and D+/- chimera among apparent D- first-time blood donors, polymerase chain reaction (PCR) screening was implemented as a routine service.
Study Design And Methods: A total of 23,330 pretyped D- samples were tested for RHD markers in Exons 4, 7, and 10 in pools of 20 by PCR.
DNA sequencing is the gold standard for high-resolution genotyping of the highly polymorphic human leukocyte antigen (HLA) loci. In the case of hematopoietic stem cell transplantation, four-digit typing of HLA class I and II genes is indicated. We developed a group-specific, real-time polymerase chain reaction (PCR) strategy for amplification of DRB1 applying TaqMan chemistry on different real-time machines.
View Article and Find Full Text PDFBackground: More than 50 weak D alleles and numerous partial D alleles have been described to date that can be identified by molecular methods as polymerase chain reaction (PCR) and DNA sequencing of the RHD gene. A real time-based RHD typing scheme was developed and tested during an 8-month period.
Study Design And Methods: A total of 53,347 blood donors and patients were tested with standardized immunohematologic methods.
TSC1 and TSC2 are responsible for the tumor suppressor gene syndrome tuberous sclerosis (TSC). Mammalian TSC genes have been shown to be involved in cell cycle regulation. Recently, in Drosophila, these data have been confirmed and TSC genes have further been demonstrated to affect cell size control.
View Article and Find Full Text PDFBreast cancer is one of the most frequent malignancies affecting women. The human breast cancer gene 1 (BRCA1) gene is mutated in a distinct proportion of hereditary breast and ovarian cancers. Tumourigenesis in individuals with germline BRCA1 mutations requires somatic inactivation of the remaining wild-type allelle.
View Article and Find Full Text PDF