The reciprocal connections between the cerebellum and the cerebrum have been suggested to simultaneously play a role in brain size increase and to support a broad array of brain functions in primates. The cerebello-cerebral system has undergone marked functionally relevant reorganization. In particular, the lateral cerebellar lobules crura I-II (the ansiform) have been suggested to be expanded in hominoids.
View Article and Find Full Text PDFThe process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution.
View Article and Find Full Text PDFStudies in comparative neuroanatomy and of the fossil record demonstrate the influence of socio-ecological niches on the morphology of the cerebral cortex, but have led to oftentimes conflicting theories about its evolution. Here, we study the relationship between the shape of the cerebral cortex and the topography of its function. We establish a joint geometric representation of the cerebral cortices of ninety species of extant Euarchontoglires, including commonly used experimental model organisms.
View Article and Find Full Text PDFThe longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates.
View Article and Find Full Text PDFWhite matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation.
View Article and Find Full Text PDFAs the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.
View Article and Find Full Text PDFBrainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.
View Article and Find Full Text PDFEvolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history.
View Article and Find Full Text PDFNeuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices.
View Article and Find Full Text PDFThe anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture and noninvasively. However, its reliability is still highly debated.
View Article and Find Full Text PDFWe conducted a comparative analysis of primate cerebral size and neocortical folding using magnetic resonance imaging data from 65 individuals belonging to 34 different species. We measured several neocortical folding parameters and studied their evolution using phylogenetic comparative methods. Our results suggest that the most likely model for neuroanatomical evolution is one where differences appear randomly (the Brownian Motion model), however, alternative models cannot be completely ruled out.
View Article and Find Full Text PDFPhys Life Rev
December 2019
During the short period of brain development, nature is able to build the only system we know capable of producing cognition, language, creativity, and consciousness. The neocortex - the outermost layer of the mammalian cerebrum - appears to be the biological substrate of these abilities. Its development requires not only the precise placement and wiring of billions of cells, but also the implementation of mechanisms to ensure a viable cognition despite sometimes dramatic perturbations.
View Article and Find Full Text PDFAdhesion of T cells after stimulation of the T-cell receptor (TCR) is mediated via signaling processes that have collectively been termed inside-out signaling. The molecular basis for inside-out signaling is not yet completely understood. Here, we show that a signaling module comprising the cytosolic adapter proteins ADAP and SKAP55 is involved in TCR-mediated inside-out signaling and, moreover, that the interaction between ADAP and SKAP55 is mandatory for integrin activation.
View Article and Find Full Text PDFSH3 domains represent versatile scaffolds within eukaryotic cells by targeting proline-rich sequences within intracellular proteins. More recently, binding of SH3 domains to unusual peptide motifs, folded proteins or lipids has been reported. Here we show that the newly defined hSH3 domains of immune cell adapter proteins bind lipid membranes with distinct affinities.
View Article and Find Full Text PDFAdhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides.
View Article and Find Full Text PDFProtein-protein interactions are often mediated by small domains that recognize solvent-exposed peptide sequences. Deciphering the recognition code for these adapter domains is an important step in the understanding of multi-protein assemblies. Here, we investigate the sequence requirements for the CD2BP2-GYF domain, a proline-rich sequence binding module previously shown to be involved in T cell signaling.
View Article and Find Full Text PDFThe adapter protein ADAP (FYB/SLAP-130) provides a critical link between T cell receptor (TCR) signaling and cell adhesion via the activation of integrins. The C-terminal 70 residues of ADAP show homology to SH3 domains; however, conserved residues of the fold are absent. An alignment and annotation of this domain has therefore been elusive.
View Article and Find Full Text PDF