Immune checkpoint blocking therapy is a promising cancer treatment modality, though it has limitations such as systemic toxicity, which can often be traced to uncontrolled antibody spread. Controlling antibody release with delivery systems is, therefore, an attractive approach to reduce systemic antibody spread and potentially mitigate the side effects of checkpoint immunotherapy. Here, bacterial cellulose (BC) was produced and investigated as a delivery system for optimizing checkpoint-blocking antibody delivery.
View Article and Find Full Text PDF(1) Background: doxorubicin is a potent chemotherapeutic agent, but it has limitations regarding its side effects and therapy resistance. Hydrogels potentially deal with these problems, but several characterizations need to be optimized to better understand how hydrogel assisted chemotherapy works. Poloxamer 407 (P407) hydrogels were mixed with doxorubicin and physico-chemical, biological, and pharmacological characterizations were considered.
View Article and Find Full Text PDFPurpose: Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT).
View Article and Find Full Text PDFThe goal of this retrospective, multicenter study was to evaluate the ability of a newly developed refinement of a quantitative methylation-specific PCR assay to detect prostate cancer in histopathologically negative biopsy samples collected from men who were later positively diagnosed during a follow-up biopsy procedure. Biomarkers tested in the assay included the much-studied glutathione-S-transferase P1 gene and others reported to be frequently methylated in prostate cancer. Core biopsy tissue from subjects with serial negative biopsies served as a negative control to assess assay specificity.
View Article and Find Full Text PDFEur Urol
July 2010
Background: Accumulating evidence suggests that DNA methylation markers could serve as sensitive and specific cancer biomarkers.
Objective: To determine whether a panel of methylated genes would have the potential to identify primary bladder cancer (BCa) in voided urine samples.
Design, Setting, And Participants: A pharmacologic unmasking reexpression analysis in BCa cell lines was initially undertaken to unveil candidate methylated genes, which were then evaluated in methylation-specific polymerase chain reaction (MSP) assays performed on DNA extracted from noncancerous and cancerous bladder tissues.
We have used a gene expression array-based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)-marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115).
View Article and Find Full Text PDFEpigenetic silencing of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) by promoter methylation predicts successful alkylating agent therapy, such as with temozolomide, in glioblastoma patients. Stratified therapy assignment of patients in prospective clinical trials according to tumor MGMT status requires a standardized diagnostic test, suitable for high-throughput analysis of small amounts of formalin-fixed, paraffin-embedded tumor tissue. A direct, real-time methylation-specific PCR (MSP) assay was developed to determine methylation status of the MGMT gene promoter.
View Article and Find Full Text PDFPromoter hypermethylation of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) has been associated with an enhanced response to chloroethylating and methylating agents in patients with malignant glioma. The purpose of this study was to compare three distinct yet related indices for measuring AGT to determine if these assays could be used interchangeably when AGT status is to be used to guide chemotherapeutic decisions. Real-time methylation-specific PCR (MSP), assessed as the ratio of methylated AGT copies to internal beta-actin control, was used to quantitate AGT hypermethylation in 32 glioma samples.
View Article and Find Full Text PDF