ATP-binding cassette (ABC) transporters constitute one of the largest protein superfamilies, and they mediate the transport of diverse substrates across the membrane. The molecular mechanism for transducing the energy from ATP binding and hydrolysis into the conformational changes remains elusive. Here, we determined the thermodynamics underlying the ATP-induced global conformational switching for the ABC exporter TmrAB using temperature-resolved pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy.
View Article and Find Full Text PDFObservation of structure and conformational dynamics of membrane proteins at high resolution in their native environments is challenging because of the lack of suitable techniques. We have developed an approach for high-precision distance measurements in the nanometer range for outer-membrane proteins (OMPs) in intact Escherichia coli and native membranes. OMPs in Gram-negative bacteria rarely have reactive cysteines.
View Article and Find Full Text PDFATP-binding cassette (ABC) exporters actively move chemically diverse substrates across biological membranes. Their malfunction leads to human diseases. Many ABC exporters encompass asymmetric nucleotide-binding sites (NBSs), and some of them are inhibited by the transported substrate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
ABC transporters form one of the largest protein superfamilies in all domains of life, catalyzing the movement of diverse substrates across membranes. In this key position, ABC transporters can mediate multidrug resistance in cancer therapy and their dysfunction is linked to various diseases. Here, we describe the 2.
View Article and Find Full Text PDF