The activity of natural killer (NK) cells is regulated by a fine-tuned balance between activating and inhibitory receptors. Dual-color fluorescence cross-correlation spectroscopy (FCCS) was used to directly demonstrate a so-called cis-interaction between a member of the inhibitory NK cell receptor family Ly49 (Ly49A), and its ligand, the major histocompatibility complex (MHC) class I, within the plasma membrane of the same cell. By a refined FCCS model, calibrated by positive and negative control experiments on cells from the same lymphoid cell line, concentrations and diffusion coefficients of free and interacting proteins could be determined on a collection of cells.
View Article and Find Full Text PDFMurine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell.
View Article and Find Full Text PDFIntercellular transfer of proteins across the immunological synapse is emerging as a common outcome of immune surveillance. We previously reported that target-cell MHC class I protein transfers onto natural killer (NK) cells expressing cognate killer Ig-like receptors (KIRs). We now show that, for both murine and human cells, target cells expressing inhibitory MHC class I ligands acquire cognate inhibitory NK receptors.
View Article and Find Full Text PDFHeterogeneity in the supramolecular organization of immunological synapses arises from the involvement of different cells, distinct environmental stimuli, and varying levels of protein expression. There may also be heterogeneity in the types and amounts of cell surface proteins and lipids that transfer between lymphocytes during immune surveillance. In addition, immune cells can be involved in the assembly of a 'viral synapse', such that micrometer-scale organization of proteins at intercellular contacts occurs during transmission of a virus between T cells.
View Article and Find Full Text PDF