Publications by authors named "Katinka Van der Kooij"

Background: Clinical decisions regarding ankle-foot-orthosis stiffness in people with calf muscle weakness are based on immediate evaluations, not taking gait adaptation into account. This study examined adaptation of step length, walking speed and energy cost of walking in the 3-months post-provision and whether individuals with higher gait variability adapt more compared to individuals with lower gait variability.

Methods: We conducted a post-hoc analysis in eighteen stiffness-optimized ankle-foot-orthosis users with bilateral calf muscle weakness.

View Article and Find Full Text PDF

Childhood is an obvious period for motor learning, since children's musculoskeletal and nervous systems are still in development. Adults adapt movements based on reward feedback about success and failure, but it is less established whether school-age children also exhibit such reward-based motor learning. We designed a new 'circle-drawing' task suitable for assessing reward-based motor learning in both children (7-17 years old) and adults (18-65 years old).

View Article and Find Full Text PDF

We investigated whether dosed failure motivates older adults to perform more repetitions in an exergame that involves hitting targets with stepping movements. The effect of dosed failure was studied in a within-participants design in which all participants performed this exergame in both a Standard condition, in which one never fails, and in a Dosed Failure condition, in which we introduced about 30% failures. The order of conditions (Standard First or Dosed Failure first) was chosen randomly for each participant.

View Article and Find Full Text PDF

From a baby's babbling to a songbird practising a new tune, exploration is critical to motor learning. A hallmark of exploration is the emergence of random walk behaviour along solution manifolds, where successive motor actions are not independent but rather become serially dependent. Such exploratory random walk behaviour is ubiquitous across species' neural firing, gait patterns and reaching behaviour.

View Article and Find Full Text PDF

Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induces implicit learning. We examined this question in a center-out reaching task by gradually moving an invisible reward zone away from a visual target to a final rotation of 7.

View Article and Find Full Text PDF

Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induce implicit learning. We examined this question in a center-out reaching task by gradually moving an invisible reward zone away from a visual target to a final rotation of 7.

View Article and Find Full Text PDF

During reward-based motor tasks, performance failure leads to an increase in movement variability along task-relevant dimensions. These increases in movement variability are indicative of exploratory behaviour in search of a better, more successful motor action. It is unclear whether failure also induces exploration along task-irrelevant dimensions that do not influence performance.

View Article and Find Full Text PDF

When children practice a new skill and fail, it is critical for them to explore new strategies to succeed. How can parents encourage children's exploration? Bridging insights from developmental psychology and the neuroscience of motor control, we examined the effects of parental praise on children's motor exploration. We theorize that modest praise can spark exploration.

View Article and Find Full Text PDF

It is well-established that intermediate challenge is optimally motivating. We tested whether this can be quantified into an inverted-U relationship between motivation and success frequency. Participants played a game in which they navigated a scene to catch targets.

View Article and Find Full Text PDF

When learning a movement based on binary success information, one is more variable following failure than following success. Theoretically, the additional variability post-failure might reflect exploration of possibilities to obtain success. When average behavior is changing (as in learning), variability can be estimated from differences between subsequent movements.

View Article and Find Full Text PDF

Binary reward feedback on movement success is sufficient for learning some simple sensorimotor mappings in a reaching task, but not for some other tasks in which multiple kinematic factors contribute to performance. The critical condition for learning in more complex tasks remains unclear. Here, we investigate whether reward-based motor learning is possible in a multi-dimensional trajectory matching task and whether simplifying the task by providing feedback on one factor at a time ('factorized feedback') can improve learning.

View Article and Find Full Text PDF

Exploration in reward-based motor learning is observable in experimental data as increased variability. In order to quantify exploration, we compare three methods for estimating other sources of variability: sensorimotor noise. We use a task in which participants could receive stochastic binary reward feedback following a target-directed weight shift.

View Article and Find Full Text PDF

It is tempting to describe human reach-to-grasp movements in terms of two, more or less independent visuomotor channels, one relating hand transport to the object's location and the other relating grip aperture to the object's size. Our review of experimental work questions this framework for reasons that go beyond noting the dependence between the two channels. Both the lack of effect of size illusions on grip aperture and the finding that the variability in grip aperture does not depend on the object's size indicate that size information is not used to control grip aperture.

View Article and Find Full Text PDF

We may be motivated to engage in a certain motor activity because it is instrumental to obtaining reward (e.g., money) or because we enjoy the activity, making it intrinsically rewarding.

View Article and Find Full Text PDF

Recently it has been shown that rewarded variability can be used to adapt visuomotor behavior. However, its relevance seems limited because adaptation to binary rewards has been demonstrated only when the same movement is repeated throughout the experiment. We therefore investigated whether the adaptation is action-specific and whether the amount of exploration depends on spatial complexity.

View Article and Find Full Text PDF
Article Synopsis
  • The brain adjusts motor movements based on visual feedback about errors, and rewards can aid this adaptation, but the exact mechanism is unclear.
  • A study involving 423 participants used a challenging 3D pointing task to explore how different amounts of reward feedback affected learning from mistakes.
  • Results showed that participants who only received reward feedback and those with abundant rewards adapted less to their errors, indicating that too much reward can hinder error learning and reliance on it may disrupt the adaptation process.
View Article and Find Full Text PDF

Sensorimotor adaptation, the process that reduces movement errors by learning from sensory feedback, is often studied within a session of about half an hour. Within such a single session, adaptation generally reaches plateau before errors are completely removed. However, adaptation may complete on longer timescales: the slow components of error-based adaptation are associated with good retention.

View Article and Find Full Text PDF

Even when provided with feedback after every movement, adaptation levels off before biases are completely removed. Incomplete adaptation has recently been attributed to forgetting: the adaptation is already partially forgotten by the time the next movement is made. Here we test whether this idea is correct.

View Article and Find Full Text PDF

Evidence for contextual effects is widespread in visual perception. Although this suggests that contextual effects are the result of a generic property of the visual system, current explanations are limited to the domain in which they occur. In this paper we propose a more general mechanism of global influences on the perception of slant.

View Article and Find Full Text PDF

We investigated whether a shape contrast bias is caused by local contrast enhancement or by a global mechanism. In a baseline condition, observers performed a shape discrimination task on an isolated hinged plane. But in the experimental conditions, five dihedral surfaces, of which we varied the dihedral angle distribution, were added on each side.

View Article and Find Full Text PDF

Noisy estimations of shape can be partially resolved by incorporating relevant information from the context. The effect of surround stimuli on shape perception becomes clear in illusions of shape contrast and assimilation. In this study, we answer the question how a surround-induced bias depends on the reliability of shape signals.

View Article and Find Full Text PDF

Whereas integration of shape and surround is held to occur through cue-dependent representations, we show that both cue-invariant and cue-dependent representations are involved. A central hinged plane and larger flanking plane were defined by either binocular disparity or motion. In a 'within-cue' condition, shape and surround were defined by the same cue and in a 'cross-cue' condition they were defined by a different cue.

View Article and Find Full Text PDF

Can people "see" previously unnoticed properties in objects that they visualize, or are they locked into the organization of the pattern that was encoded during perception? To answer this question, we first asked a group to describe letters of the alphabet and found that some properties (such as the presence of a diagonal line) are often mentioned, whereas others (such as symmetry) are rarely if ever mentioned. Then we showed not only that other participants could correctly detect both kinds of properties in visualized letters, but also that the relative differences in the ease of detecting these two types of properties are highly similar in perception (when the letters are actually visible) and imagery (when the letters are merely visualized). These findings provide support for the view that images can be reinterpreted in ways much like what occurs during perception and speak to the wider issue of the long-standing debate about the format of mental images.

View Article and Find Full Text PDF