Publications by authors named "Katily Ramirez"

The separation of peripheral blood mononuclear cells (PBMCs) into constituent blood cell types is a vital step to obtain immune cells for autologous cell therapies. The ability to separate PBMCs using label-free microfluidic techniques, based on differences in biomechanical properties, can have a number of benefits over other conventional techniques, including lower cost, ease of use, and avoidance of animal-derived labeling antibodies. Here, we report a microfluidic device that uses compressive diagonal ridges to separate PBMCs into highly pure samples of viable and functional lymphocytes.

View Article and Find Full Text PDF

Isolating cells based on their secreted proteins remain a challenge. The authors demonstrate a capacity for high throughput single-cell protein secretion analysis and isolation based on heterofunctional particles combined with fluorescence activated cell sorting (FACS). The workflow shows that antibody secreting cells (ASCs) specific for the H1 protein from influenza virus can be isolated from B cells.

View Article and Find Full Text PDF

Cytotoxic effector cells are an integral component of the immune response against pathogens and diseases such as cancer and thus of great interest to researchers who wish to enhance the native immune response. Although researchers routinely use particles to stimulate cytotoxic T cells, few studies have comprehensively investigated: (1) beyond initial activation responses (i.e.

View Article and Find Full Text PDF

Bead reagents are used in a large number of assays in bioscience and biotechnology to collect and purify antibodies by immobilization. Bead-based immunoassays offer high-throughput analysis of multiple antibodies in a single sample. Although a variety of antibody-binding moieties on the collection beads have been studied, the physical and material properties of collection beads have not been optimized to isolate specific antibodies over a broad range of concentrations from complex environments containing cells.

View Article and Find Full Text PDF