Publications by authors named "Katie Zellner"

Primary central nervous system lymphoma (PCNSL) is clinically challenging due to its location and small biopsy size, leading to a lack of comprehensive molecular and biologic description. We previously demonstrated that 91% of PCNSL belong to the activated B-cell-like (ABC) molecular subtype of diffuse large B-cell lymphoma (DLBCL). Here we investigated the expression of 739 cancer related genes in HIV (-) patients using NanoString digital gene expression profiling in 25 ABC-PCNSL and 43 ABC-systemic DLBCL, all tumors were EBV (-).

View Article and Find Full Text PDF

Formalin-fixed, paraffin-embedded (FFPE) tissues are a valuable resource for clinical and basic science research. Paraffin blocks and the resulting unstained sections (USS) are often stored for years before being used. Previous studies have evaluated the effects of time, temperature, humidity, and inert gases on preservation of USS; however, no study has examined all four variables together.

View Article and Find Full Text PDF

Ocular chronic graft-versus-host disease (oGVHD) is a relatively common complication that occurs following allogeneic hematopoietic cell transplantation. Keratoconjunctivitis sicca (KCS) is the most common manifestation of oGVHD. Lifitegrast is a lymphocyte function-associated antigen-1 antagonist approved to reduce inflammation and symptoms in patients with dry eye disease.

View Article and Find Full Text PDF

Clinical observations implicate a role of eosinophils in cardiovascular diseases because markers of eosinophil activation are elevated in atherosclerosis and thrombosis. However, their contribution to atherosclerotic plaque formation and arterial thrombosis remains unclear. In these settings, we investigated how eosinophils are recruited and activated through an interplay with platelets.

View Article and Find Full Text PDF

Eosinophil degranulation is a determining factor in allergy-mediated airway pathology. Receptor-mediated degranulation in eosinophils requires vesicle-associated membrane protein 7 (VAMP-7), a principal component of the SNARE fusion machinery. The specific contribution of eosinophil degranulation to allergen-induced airway responses remains poorly understood.

View Article and Find Full Text PDF

Background: All animals have mechanisms for healing damage to the epithelial sheets that cover the body and line internal cavities. Epithelial wounds heal either by cells crawling over the wound gap, by contraction of a super-cellular actin cable ("purse string") that surrounds the wound, or some combination of the two mechanisms. Both cell crawling and purse string closure of epithelial wounds are widely observed across vertebrates and invertebrates, suggesting early evolution of these mechanisms.

View Article and Find Full Text PDF

Blood coagulation is essential for physiological hemostasis but simultaneously contributes to thrombotic disease. However, molecular and cellular events controlling initiation and propagation of coagulation are still incompletely understood. In this study, we demonstrate an unexpected role of eosinophils during plasmatic coagulation, hemostasis, and thrombosis.

View Article and Find Full Text PDF

Eosinophils and the release of cationic granule proteins have long been implicated in the development of the type 2-induced pathologies linked with respiratory inflammation. Paradoxically, the ablation of the two genes encoding the most abundant of these granule proteins, major basic protein-1 () and eosinophil peroxidase (), results in a near collapse of eosinophilopoiesis. The specificity of this lineage ablation and the magnitude of the induced eosinopenia provide a unique opportunity to clarify the importance of eosinophils in acute and chronic inflammatory settings, as well as to identify potential mechanism(s) of action linked with pulmonary eosinophils in those settings.

View Article and Find Full Text PDF

Rationale: The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis.

Objectives: To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation.

View Article and Find Full Text PDF

Background: Contact toxicant reactions are accompanied by localized skin inflammation and concomitant increases in site-specific itch responses. The role(s) of eosinophils in these reactions is poorly understood. However, previous studies have suggested that localized eosinophil-nerve interactions at sites of inflammation significantly alter tissue innervation.

View Article and Find Full Text PDF

Leukotrienes (i.e., products of the 5-lipoxygenase pathway) are thought to be contributors to lung pathologies.

View Article and Find Full Text PDF

The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both.

View Article and Find Full Text PDF

Reports have recently suggested that eosinophils have the potential to modulate allergen-dependent pulmonary immune responses. The studies presented expand these reports demonstrating in the mouse that eosinophils are required for the allergen-dependent Th2 pulmonary immune responses mediated by dendritic cells (DCs) and T lymphocytes. Specifically, the recruitment of peripheral eosinophils to the pulmonary lymphatic compartment(s) was required for the accumulation of myeloid DCs in draining lymph nodes and, in turn, Ag-specific T effector cell production.

View Article and Find Full Text PDF