Publications by authors named "Katie Tunison"

Both humans and mice with congenital generalized lipodystrophy due to AGPAT2 deficiency develop diabetes mellitus, insulin resistance, and hepatic steatosis, which have been attributed to the near total loss of adipose tissue (AT). Here, we show that regulated AT regeneration in doxycycline (dox)-fed Tg;m mice partially ameliorates hepatic steatosis at 12 weeks of age and causes reduced expression of genes involved in hepatic lipogenesis despite partial (∼30-50%) AT regeneration compared to that in wild-type mice. Compared to chow-fed Tg;m mice, those fed dox diet had markedly reduced serum insulin levels, suggesting an improvement in insulin resistance.

View Article and Find Full Text PDF

AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice.

View Article and Find Full Text PDF

Genetic loss of in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human (hAGPAT2) in -null mice, regulated by doxycycline.

View Article and Find Full Text PDF

Loss of dysferlin (DYSF) protein in humans results in limb-girdle muscular dystrophy 2B, characterized by progressive loss of muscles in the distal limbs with impaired locomotion. The DYSF-null (Bla/J) mouse develops severe steatotic muscles upon aging. Here, we report a marked increase in adipocytes, especially in the psoas and gluteus muscles but not in the soleus and tibialis anterior muscles in aged Bla/J mice compared with WT mice.

View Article and Find Full Text PDF

Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol.

View Article and Find Full Text PDF

Reducing triacylglycerol (TAG) in the liver continues to pose a challenge in states of nonalcoholic hepatic steatosis. MonoacylglycerolO-acyltransferase (MOGAT) enzymes convert monoacylglycerol (MAG) to diacylglycerol, a precursor for TAG synthesis, and are involved in a major pathway of TAG synthesis in selected tissues, such as small intestine. MOGAT1 possesses MGAT activity in in vitro assays, but its physiological function in TAG metabolism is unknown.

View Article and Find Full Text PDF

Loss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis.

View Article and Find Full Text PDF