Mycobacterium tuberculosis (Mtb) is the deadliest bacterial pathogen in the world. An estimated one-third of humans harbor Mtb in a dormant state. These asymptomatic, latent infections impede tuberculosis eradication due to the long-term potential for reactivation.
View Article and Find Full Text PDFEnzyme-activated, fluorogenic probes are powerful tools for studying bacterial pathogens, including Mycobacterium tuberculosis (Mtb). In prior work, we reported two 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO)-derived acetoxymethyl ether probes for esterase and lipase detection. Here, we report four-carbon (C4) and eight-carbon (C8) acyloxymethyl ether derivatives, which are longer-chain fluorogenic substrates.
View Article and Find Full Text PDFFluorogenic enzyme probes go from a dark to a bright state following hydrolysis and can provide a sensitive, real-time readout of enzyme activity. They are useful for examining enzymatic activity in bacteria, including the human pathogen Mycobacterium tuberculosis. Herein, we describe two fluorogenic esterase probes derived from the far-red fluorophore 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO).
View Article and Find Full Text PDFNeuropsychopharmacology
November 2012