Publications by authors named "Katie N Kang"

The class A penicillin-binding proteins (aPBPs), PBP1A and PBP1B, are major peptidoglycan synthases that synthesize more than half of the peptidoglycan per generation in Escherichia coli. Whereas aPBPs have distinct roles in peptidoglycan biosynthesis during growth (i.e.

View Article and Find Full Text PDF

β-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit "tolerance," the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood.

View Article and Find Full Text PDF

Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several clinical isolates produced LOS colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS PBP1A contributes to proper cell division in , and its absence induced cell chaining.

View Article and Find Full Text PDF

Objectives: Metallo-β-lactamases (MBLs) are an emerging class of antimicrobial resistance enzymes that degrade β-lactam antibiotics, including last-resort carbapenems. Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) are increasingly prevalent, but treatment options are limited. While several serine-dependent β-lactamase inhibitors are formulated with commonly prescribed β-lactams, no MBL inhibitors are currently approved for combinatorial therapies.

View Article and Find Full Text PDF

The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics.

View Article and Find Full Text PDF