Publications by authors named "Katie M Yocham"

Graphene foam holds promise for tissue engineering applications. In this study, graphene foam was used as a three-dimension scaffold to evaluate cell attachment, cell morphology, and molecular markers of early differentiation. The aim of this study was to determine if cell attachment and elaboration of an extracellular matrix would be modulated by functionalization of graphene foam with fibronectin, an extracellular matrix protein that cells adhere well to, prior to the establishment of three-dimensional cell culture.

View Article and Find Full Text PDF

Graphene foam (GF), a 3-dimensional derivative of graphene, has received much attention recently for applications in tissue engineering due to its unique mechanical, electrical, and thermal properties. Although GF is an appealing material for cartilage tissue engineering, the mechanical properties of GF - tissue composites under dynamic compressive loads have not yet been reported. The objective of this study was to measure the elastic and viscoelastic properties of GF and GF-tissue composites under unconfined compression when quasi-static and dynamic loads are applied at strain magnitudes below 20%.

View Article and Find Full Text PDF

This study demonstrates the growth and differentiation of C2C12 myoblasts into functional myotubes on 3-dimensional graphene foam bioscaffolds. Specifically, we establish both bare and laminin coated graphene foam as a biocompatible platform for muscle cells and identify that electrical coupling stimulates cell activity. Cell differentiation and functionality is determined by the expression of myotube heavy chain protein and Ca fluorescence, respectively.

View Article and Find Full Text PDF

The large-scale conformation of DNA molecules plays a critical role in many basic elements of cellular functionality and viability. By targeting the structural properties of DNA, many cancer drugs, such as anthracyclines, effectively inhibit tumor growth but can also produce dangerous side effects. To enhance the development of innovative medications, rapid screening of structural changes to DNA can provide important insight into their mechanism of interaction.

View Article and Find Full Text PDF