Publications by authors named "Katie M Wiens"

Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attractive model for investigating normal social behavior as well as exploring impaired social function conditions such as autism spectrum disorders. Newly-formed and established shoals exhibit distinct behavior patterns and inter-member interactions that can convey the group's social stability.

View Article and Find Full Text PDF

Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development.

View Article and Find Full Text PDF

In the United States, persistence for women and ethnic minorities in science, technology, engineering, and math (STEM) careers is strongly impacted by affective factors such as science identity, agency, and sense of belonging. Policies aimed at increasing the diversity of the national STEM student population and workforce have recently focused on fostering inclusive learning environments that can positively impact the experiences of underrepresented minorities (URMs) in STEM, thus increasing their retention. While research on inclusion in STEM in higher education is relatively new, inclusion research has a rich history in several other disciplines.

View Article and Find Full Text PDF

In contrast to efforts focusing on improving inclusion in STEM classrooms from kindergarten through undergraduate (K-16), efforts to improve inclusion in scientific meetings and conferences, important hubs of STEM culture, are more recent. Markers of inclusion that are sometimes overlooked at these events can include the composition of panels, how workshops are run, the affordability of conferences, and various other mechanisms that maintain pre-existing hierarchies and norms that limit the participation of early-career researchers and individuals of minoritized cultural, linguistic, and economic backgrounds. The Inclusive Environments and Metrics in Biology Education and Research (iEMBER) network coordinates efforts of researchers from many fields interested in diversity and inclusion in biology education.

View Article and Find Full Text PDF

Behavioral assays of zebrafish shoaling have recently been employed to investigate social behavior in zebrafish models of psychiatric disease. Many studies have developed simulated models of conspecifics to serve as alternatives to live shoals in order to examine specific cues that contribute to shoaling behavior. However, no studies have investigated the extent to which zebrafish prefer one stimulus over another when given the choice between two conspecific alternatives (live or simulated).

View Article and Find Full Text PDF

A zebrafish heart can fully regenerate after amputation of up to 20% of its ventricle. During this process, newly formed coronary blood vessels revascularize the regenerating tissue. The formation of coronary blood vessels during zebrafish heart regeneration likely recapitulates embryonic coronary vessel development, which involves the activation and proliferation of the epicardium, followed by an epithelial-to-mesenchymal transition.

View Article and Find Full Text PDF

Background: Platelet-derived growth factor receptor beta (PDGFRbeta) is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRbeta functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization.

View Article and Find Full Text PDF

Glutamatergic synapses switch from nonspiny synapses to become dendritic spines during early neuronal development. Here, we report that the lack of sufficient Rac1, a small RhoGTPase, contributes to the absence of spinogenesis in immature neurons. The overexpression of green fluorescence protein-tagged wild-type Rac1 initiated the formation of dendritic spines in cultured dissociated hippocampal neurons younger than 11 d in vitro, indicating that Rac1 is likely one of the missing pieces responsible for the lack of spines in immature neurons.

View Article and Find Full Text PDF