The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres. As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres.
View Article and Find Full Text PDFNanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods.
View Article and Find Full Text PDFMeasurement and understanding of the microscopic pathways materials follow as they transform is crucial for the design and synthesis of new metastable phases of matter. Here we employ femtosecond single-shot X-ray diffraction techniques to measure the pathways underlying solid-solid phase transitions in cadmium sulfide nanorods, a model system for a general class of martensitic transformations. Using picosecond rise-time laser-generated shocks to trigger the transformation, we directly observe the transition state dynamics associated with the wurtzite-to-rocksalt structural phase transformation in cadmium sulfide with atomic-scale resolution.
View Article and Find Full Text PDFIt is well-believed that below a certain particle size, grain boundary-mediated plastic deformation (e.g., grain rotation, grain boundary sliding and diffusion) substitutes for conventional dislocation nucleation and motion as the dominant deformation mechanism.
View Article and Find Full Text PDFThe size of nanocrystals provides a limitation on dislocation activity and associated stress-induced deformation. Dislocation-mediated plastic deformation is expected to become inactive below a critical particle size, which has been proposed to be between 10 and 30 nanometers according to computer simulations and transmission electron microscopy analysis. However, deformation experiments at high pressure on polycrystalline nickel suggest that dislocation activity is still operative in 3-nanometer crystals.
View Article and Find Full Text PDFThe kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist.
View Article and Find Full Text PDFAcyclovir (ACV) has been commonly used as an antiviral for decades. Although the crystal structure of the commercial form, a 3:2 ACV/water solvate, has been known since 1980s, investigation into the structure of anhydrous ACV has been limited. Here, we report the characterization of four anhydrous forms of ACV and a new hydrate in addition to the known hydrate.
View Article and Find Full Text PDFAlthough crystal polymorphism of carbamazepine (CBZ), an anticonvulsant used to treat epilepsy, has been known for decades, the phenomenon has only recently been noted for its keto-derivative oxcarbazepine (OCB). Here it is demonstrated that OCB possesses at least three anhydrous polymorphs. Although all forms are morphologically similar, making differentiation between crystal modifications by optical microscopy difficult, powder X-ray diffraction, Raman spectroscopy, and thermomicroscopy show distinctive differences.
View Article and Find Full Text PDFCryst Growth Des
January 2008
Bis(5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrilyl)acetylene, a derivative of the highly polymorphic compound 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) that possesses two chromophores electronically coupled through a triple bond, was found to be trimorphic. Structural data for two of these forms indicates that symmetry is maintained in one structure and broken in the other leading to spontaneous differentiation of the methyl-thiophenecarbonitrile units. This study contributes to the mounting evidence that ROY and its derivatives are particularly prone to polymorphism.
View Article and Find Full Text PDF