Whooping cough, or pertussis, is resurgent in many countries world-wide. This is linked to switching from the use of whole cell vaccines to acellular vaccines in developed countries. Current evidence suggests that this has resulted in the earlier waning of vaccine-induced immunity, an increase in asymptomatic infection with concomitant increases in transmission and increased selection pressure for Bordetellapertussis variants that are better able to evade vaccine-mediated immunity than older isolates.
View Article and Find Full Text PDFA major outbreak of whooping cough, or pertussis, occurred in 2012 in the United Kingdom (UK), with nearly 10 000 laboratory-confirmed cases and 14 infant deaths attributed to pertussis. A worldwide resurgence of pertussis has been linked to switch to the use of acellular pertussis vaccines and the evolution of Bordetella pertussis away from vaccine-mediated immunity. We have conducted genomic analyses of multiple strains from the UK outbreak.
View Article and Find Full Text PDFHigh levels of polymorphism in DNA sequences of tetraspanin-23 (TSP-23) were revealed within and between nine different species of Schistosoma from Africa including Schistosoma mansoni, Schistosoma rodhaini, Schistosoma margrebowiei, Schistosoma mattheei, Schistosoma intercalatum, Schistosoma haematobium, Schistosoma guineensis, Schistosoma curassoni and Schistosoma bovis. The greatest levels of diversity coincided with evidence of positive selection (d(N)/d(S)>1) within regions that code for extracellular loops of TSP-23 believed to interact with the host immune system. Kolaskar and Tongaonkar antigenicity predictions of protein sequences were compared across species and high levels of variation in antigenicity were also identified with each species which possessed their own unique antigenic profile.
View Article and Find Full Text PDFCell adhesion and spreading are vital to immune function. In molluscs, haemocytes (circulating phagocytes) are sentinels and effectors of the internal defence system; however, molecular mechanisms that regulate integrin-mediated spreading by haemocytes have not been characterised in detail. Visualisation of Lymnaea stagnalis haemocytes by scanning electron microscopy revealed membrane ruffling, formation of lamellipodia and extensive filopodia during early stages of cell adhesion and spreading.
View Article and Find Full Text PDF