High speed photography in micro-particle image velocimetry (μPIV) using red blood cells as tracer particles and the use of fluorescing tracer particles (in conjunction with pulsed images) are directly compared by using both methods simultaneously. Measurements are taken on the same blood sample in the same microchip using both methods. This work directly and statistically compares the two methods of μPIV measurement in a controlled in vitro environment for the first time in literature.
View Article and Find Full Text PDFIt is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone.
View Article and Find Full Text PDFMicro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels.
View Article and Find Full Text PDFMicro particle image velocimetry (µPIV) is a common method to assess flow behavior in blood microvessels in vitro as well as in vivo. The use of red blood cells (RBCs) as tracer particles, as generally considered in vivo, creates a large depth of correlation (DOC), even as large as the vessel itself, which decreases the accuracy of the method. The limitations of µPIV for blood flow measurements based on RBC tracking still have to be evaluated.
View Article and Find Full Text PDF