Publications by authors named "Katie L I M Blundell"

Selective recruitment of protein kinases to the Hsp90 system is mediated by the adaptor co-chaperone Cdc37. We show that assembly of CDK4 and CDK6 into protein complexes is differentially regulated by the Cdc37-Hsp90 system. Like other Hsp90 kinase clients, binding of CDK4/6 to Cdc37 is blocked by ATP-competitive inhibitors.

View Article and Find Full Text PDF

Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70.

View Article and Find Full Text PDF

Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer's disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis.

View Article and Find Full Text PDF

In Streptomyces lividans an extracytoplasmic copper-binding Sco protein plays a role in two unlinked processes: (i) initiating a morphological development switch and (ii) facilitating the co-factoring of the CuA domain of CcO (cytochrome c oxidase). How Sco obtains copper once secreted to the extracytoplasmic environment is unknown. In the present paper we report on a protein possessing an HX₆MX₂₁HXM motif that binds a single cuprous ion with subfemtomolar affinity.

View Article and Find Full Text PDF

We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding.

View Article and Find Full Text PDF

The mechanisms and spectroscopic properties generated by intermediate states upon cupric ion binding to flexible peptide motifs in proteins are of considerable interest. One such motif is the Cys-X-X-X-Cys motif characteristic to members of the Sco family of proteins. In the antibiotic producing bacterium, Streptomyces lividans, a role for its Sco protein (Sco(Sl)) as a cupric metallochaperone to the extracytoplasmic CuA domain of cytochrome c oxidase has been revealed.

View Article and Find Full Text PDF

Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (Sco(Sl)) and present a series of experiments that firmly establish a role for Sco(Sl) as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins.

View Article and Find Full Text PDF