Publications by authors named "Katie J Lamb"

The crystal structure of [Al(tBu-salen)]2O·HCl shows major changes compared to that of [Al(tBu-salen)]2O. The additional proton is localized on the bridging oxygen atom, making the aluminium atoms more electron deficient. As a result, a water molecule coordinates to one of the aluminium atoms, which becomes six-coordinate.

View Article and Find Full Text PDF

This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed.

View Article and Find Full Text PDF

The outcome of ring-expansion reactions based on amino/hydroxyacid side-chain insertion is strongly dependent on ring size. This manuscript, which builds upon our previous work on Successive Ring Expansion (SuRE) methods, details efforts to better define the scope and limitations of these reactions on lactam and β-ketoester ring systems with respect to ring size and additional functionality. The synthetic results provide clear guidelines as to which substrate classes are more likely to be successful and are supported by computational results, using a density functional theory (DFT) approach.

View Article and Find Full Text PDF

The synthesis of novel tetrahydroquinoxalines by a metal induced one-electron reductive cyclisation of salophen ligands was found to occur when a salophen ligand was treated with chromium(ii) chloride or decamethylcobaltocene.

View Article and Find Full Text PDF

An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate.

View Article and Find Full Text PDF