Publications by authors named "Katie Gandomi"

Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death.

View Article and Find Full Text PDF

Background: In stereotactic radiosurgery, isodose lines must be considered to determine how surrounding tissue is affected. In thermal ablative therapy, such as laser interstitial thermal therapy (LITT), transcranial MR-guided focused ultrasound (tcMRgFUS), and needle-based therapeutic ultrasound (NBTU), how the surrounding area is affected has not been well studied.

Objective: We aimed to quantify the transition zone surrounding the ablation core created by magnetic resonance-guided robotically-assisted (MRgRA) delivery of NBTU using multi-slice volumetric 2-D magnetic resonance thermal imaging (MRTI) and subsequent characterization of the resultant tissue damage using histopathologic analysis.

View Article and Find Full Text PDF

Neurological trauma, such as stroke, traumatic brain injury (TBI), spinal cord injury, and cerebral palsy can cause mild to severe upper limb impairments. Hand impairment makes it difficult for individuals to complete activities of daily living, especially bimanual tasks. A robotic hand orthosis or hand exoskeleton can be used to restore partial function of an intact but impaired hand.

View Article and Find Full Text PDF

The adoption of robotic image-guided surgeries has enabled physicians to perform therapeutic and diagnostic procedures with less invasiveness and higher accuracy. One example is the MRI-guided stereotactic robotic-assisted surgery for conformal brain tumor ablation, where the robot is used to position and orient a thin probe to target a desired region within the brain. Requirements such as the remote center of motion and precise manipulation, impose the use of complex kinematic structures, which result in non-trivial workspaces in these robots.

View Article and Find Full Text PDF

Background: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods.

Objective: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU.

View Article and Find Full Text PDF

The primary objective of cancer intervention is the selective removal of malignant cells while conserving surrounding healthy tissues. However, the accessibility, size and shape of the cancer can make achieving appropriate margins a challenge. One minimally invasive treatment option for these clinical cases is interstitial needle based therapeutic ultrasound (NBTU).

View Article and Find Full Text PDF

Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered nonferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields.

View Article and Find Full Text PDF

Objective: Treatment of brain tumors requires high precision in order to ensure sufficient treatment while minimizing damage to surrounding healthy tissue. Ablation of such tumors using needle-based therapeutic ultrasound (NBTU) under real-time magnetic resonance imaging (MRI) can fulfill this need. However, the constrained space and strong magnetic field in the MRI bore restricts patient access limiting precise placement of the NBTU ablation tool.

View Article and Find Full Text PDF

Intra-operative medical imaging based on magnetic resonance imaging (MRI) coupled with robotic manipulation of surgical instruments enables precise feedback-driven procedures. Electrically powered non-ferromagnetic motors based on piezoelectric elements have shown to be well suited for MRI robots. However, even avoiding ferrous materials, the high metal content on commercially available motors still cause distortions to the magnetic fields.

View Article and Find Full Text PDF

Intra-operative imaging is sometimes available to assist needle biopsy, but typical open-loop insertion does not account for unmodeled needle deflection or target shift. Closed-loop image-guided compensation for deviation from an initial straight-line trajectory through rotational control of an asymmetric tip can reduce targeting error. Incorporating robotic closed-loop control often reduces physician interaction with the patient, but by pairing closed-loop trajectory compensation with hands-on cooperatively controlled insertion, a physician's control of the procedure can be maintained while incorporating benefits of robotic accuracy.

View Article and Find Full Text PDF