Publications by authors named "Katie Cavino"

The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease.

View Article and Find Full Text PDF

Plasma amino acids and their transporters constitute an important part of the feedback loop between the liver and pancreatic α-cell function, and glucagon regulates hepatic amino acid turnover. Disruption of hepatic glucagon receptor action activates the loop and results in high plasma amino acids and hypersecretion of glucagon associated with α-cell hyperplasia. In the present study, we report a technique to rescue implanted human pancreatic islets from the mouse kidney capsule.

View Article and Find Full Text PDF

encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in protect against type 2 diabetes in humans.

View Article and Find Full Text PDF

Glucagon supports glucose homeostasis by stimulating hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic α cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic α cell proliferation via an mTOR-dependent pathway.

View Article and Find Full Text PDF

Growth and differentiation factor 8 (GDF8) is a TGF-β superfamily member, and negative regulator of skeletal muscle mass. GDF8 inhibition results in prominent muscle growth in mice, but less impressive hypertrophy in primates, including man. Broad TGF-β inhibition suggests another family member negatively regulates muscle mass, and its blockade enhances muscle growth seen with GDF8-specific inhibition.

View Article and Find Full Text PDF

Genetic disruption or pharmacologic inhibition of glucagon signaling effectively lowers blood glucose but results in compensatory glucagon hypersecretion involving expansion of pancreatic α-cell mass. Ben-Zvi et al. recently reported that angiopoietin-like protein 4 (Angptl4) links glucagon receptor inhibition to hyperglucagonemia and α-cell proliferation [Ben-Zvi et al.

View Article and Find Full Text PDF

Inactivating mutations in the insulin receptor results in extreme insulin resistance. The resulting hyperglycemia is very difficult to treat, and patients are at risk for early morbidity and mortality from complications of diabetes. We used the insulin receptor antagonist S961 to induce severe insulin resistance, hyperglycemia, and ketonemia in mice.

View Article and Find Full Text PDF

Aging improves pancreatic β-cell function in mice. This is a surprising finding because aging is typically associated with functional decline. We performed single-cell RNA sequencing of β-cells from 3- and 26-month-old mice to explore how changes in gene expression contribute to improved function with age.

View Article and Find Full Text PDF

This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles.

View Article and Find Full Text PDF

Secreted frizzled-related protein 4 (SFRP4) is an extracellular regulator of the wingless-type mouse mammary tumor virus integration site family (WNT) pathway. SFRP4 has been implicated in adipocyte dysfunction, obesity, insulin resistance, and impaired insulin secretion in patients with type 2 diabetes. However, the exact role of SFRP4 in regulating whole-body metabolism and glucose homeostasis is unknown.

View Article and Find Full Text PDF

Antagonizing glucagon action represents an attractive therapeutic option for reducing hepatic glucose production in settings of hyperglycemia where glucagon excess plays a key pathophysiological role. We therefore generated REGN1193, a fully human monoclonal antibody that binds and inhibits glucagon receptor (GCGR) signaling in vitro. REGN1193 administration to diabetic ob/ob and diet-induced obese mice lowered blood glucose to levels observed in GCGR-deficient mice.

View Article and Find Full Text PDF
Article Synopsis
  • nAChR agents like sazetidine-A have potential antidepressant-like effects based on tests in both rodents and humans.
  • The study investigated if the antidepressant effects of sazetidine were due to activation or desensitization of β2* nAChRs and whether its efficacy aligned with receptor occupancy and drug levels.
  • Findings indicated that sazetidine's antidepressant effects are linked to the activation of β2* nAChRs, and that a small activation of these receptors can lead to significant benefits without tolerance, suggesting they could be key targets for new antidepressant therapies.
View Article and Find Full Text PDF