Neovascular ocular diseases are among the most common causes of preventable or treatable vision loss. Their management involves lifelong, intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapeutics to inhibit neovascularization, the key pathological step in these diseases. Anti-VEGF products approved for ocular administration are expensive biological agents with limited stability and short half-life.
View Article and Find Full Text PDFSiponimod is a promising agent for the inhibition of ocular neovascularization in diabetic retinopathy and age-related macular degeneration. Siponimod's development for ophthalmological application is hindered by the limited information available on the drug's solubility, stability, ocular pharmacokinetics (PK), and toxicity in vivo. In this study, we investigated the aqueous stability of siponimod under stress conditions (up to 60 °C) and its degradation behavior in solution.
View Article and Find Full Text PDFIn the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) receptors control endothelial cell proliferation, migration, and survival. Evidence of the ability of S1P receptor modulators to influence multiple endothelial cell functions suggests their potential use for antiangiogenic effect. The main purpose of our study was to investigate the potential of siponimod for the inhibition of ocular angiogenesis in vitro and in vivo.
View Article and Find Full Text PDF(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures.
View Article and Find Full Text PDFOrthopaedic device implants play a crucial role in restoring functionality to patients suffering from debilitating musculoskeletal diseases or to those who have experienced traumatic injury. However, the surgical implantation of these devices carries a risk of infection, which represents a significant burden for patients and healthcare providers. This review delineates the pathogenesis of orthopaedic implant infections and the challenges that arise due to biofilm formation and the implications for treatment.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials.
View Article and Find Full Text PDFThere is an increasing momentum in research and pharmaceutical industry communities to design sustained, non-invasive delivery systems to treat chronic neovascular ocular diseases that affect the posterior segment of the eye including age-related macular degeneration and diabetic retinopathy. Current treatments include VEGF blockers, which have revolutionized the standard of care for patients, but their maximum therapeutic benefit is hampered by the need for recurrent and invasive administration procedures. Currently approved delivery systems intended to address these limitations exploit polymer technology to regulate drug release in a sustained manner.
View Article and Find Full Text PDFBr J Ophthalmol
September 2022
Neovascular ocular diseases (such as age-related macular degeneration, diabetic retinopathy and retinal vein occlusion) are characterised by common pathological processes that contribute to disease progression. These include angiogenesis, oedema, inflammation, cell death and fibrosis. Currently available therapies target the effects of vascular endothelial growth factor (VEGF), the main mediator of pathological angiogenesis.
View Article and Find Full Text PDFPoor integration of orthopaedic devices with the host tissue owing to aseptic loosening and device-associated infections are two of the leading causes of implant failure, which represents a significant problem for both patients and the healthcare system. Novel strategies have focused on silver to combat antimicrobial infections as an alternative to drug therapeutics. In this study, we investigated the impact of increasing the % substitution (12% wt) of silver and strontium in hydroxyapatite (HA) coatings to enhance antimicrobial properties and stimulate osteoblasts, respectively.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) receptor modulators can influence bone regeneration owing to their positive impact on osteoblast differentiation and neovascularisation. While previous studies have utilised non-specific S1P and fingolimod, this study aims to design and characterise a controlled release vehicle to deliver the specific S1P receptor modulator siponimod and test its effectiveness in rat critical cranial defects. Electrospun scaffolds of poly lactide-co-glycolide (PLGA) were loaded with siponimod at drug:polymer mass ratios of 0.
View Article and Find Full Text PDFThe repair of critical bone defects remains a significant therapeutic challenge. While the implantation of drug-eluting scaffolds is an option, a drug with the optimal pharmacological properties has not yet been identified. Agents acting at sphingosine 1-phosphate (S1P) receptors have been considered, but those investigated so far do not discriminate between the five known S1P receptors.
View Article and Find Full Text PDFThe lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair.
View Article and Find Full Text PDFDrug release from mesoporous silica systems has been widely investigated in vitro using USP Type II (paddle) dissolution apparatus. However, it is not clear if the observed enhanced in vitro dissolution can forecast drug bioavailability in vivo. In this study, the ability of different in vitro dissolution models to predict in vivo oral bioavailability in a pig model was examined.
View Article and Find Full Text PDFExpert Opin Drug Deliv
August 2016
Introduction: Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture.
Areas Covered: This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers.
Loading a poorly water-soluble drug onto a high surface area carrier such as mesoporous silica (SBA-15) can increase the drug's dissolution rate and oral bioavailability. The loading method can influence subsequent drug properties including solid state structure and release rate. The objective of this research was to compare several loading processes in terms of drug distribution throughout the mesoporous silica matrix, drug solid state form and drug release properties.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2013
Background: Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA).
View Article and Find Full Text PDFPoor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15).
View Article and Find Full Text PDFNanoparticles (NPs) comprised of nanoengineered complexes are providing new opportunities for enabling targeted delivery of a range of therapeutics and combinations. A range of functionalities can be included within a nanoparticle complex, including surface chemistry that allows attachment of cell-specific ligands for targeted delivery, surface coatings to increase circulation times for enhanced bioavailability, specific materials on the surface or in the nanoparticle core that enable storage of a therapeutic cargo until the target site is reached, and materials sensitive to local or remote actuation cues that allow controlled delivery of therapeutics to the target cells. However, despite the potential benefits of NPs as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of NP materials, as well as their size and shape.
View Article and Find Full Text PDF