Publications by authors named "Katia M Passera"

Background: Over the last two decades, augmented reality (AR) has been used as a visualization tool in many medical fields in order to increase precision, limit the radiation dose, and decrease the variability among operators. Here, we report the first in vivo study of a novel AR system for the guidance of percutaneous interventional oncology procedures. Methods: Eight patients with 15 liver tumors (0.

View Article and Find Full Text PDF

Purpose: To retrospectively evaluate the accuracy of a novel software platform for assessing completeness of percutaneous thermal ablations.

Materials & Methods: Ninety hepatocellular carcinomas (HCCs) in 50 patients receiving percutaneous ultrasound-guided microwave ablation (MWA) that resulted in apparent technical success at 24-h post-ablation computed tomography (CT) and with ≥1-year imaging follow-up were randomly selected from a 320 HCC ablation database (2010-2016). Using a novel volumetric registration software, pre-ablation CT volumes of the HCCs without and with the addition of a 5 mm safety margin, and corresponding post-ablation necrosis volumes were segmented, co-registered and overlapped.

View Article and Find Full Text PDF

Background: To assess the feasibility of a novel system that uses augmented reality to guide interventional oncology procedures.

Methods: This study was conducted in accordance to the guidelines of the local institutional review boards. Evaluation of an augmented reality system based upon a tablet, a needle handle and a set of markers was performed in three experimental models.

View Article and Find Full Text PDF

Aim: To evaluate a novel contrast-enhanced cone-beam computed tomography (CE-CBCT) registration method for accurate immediate assessment of ablation outcomes.

Materials And Methods: Contrast-enhanced computed tomography (CECT) was registered with CE-CBCT by applying semiautomatic landmark registration followed by automatic affine and non-rigid registration to correct for respiratory phase differences and liver deformation. This scheme was retrospectively applied to 30 patients who underwent 38 percutaneous microwave liver ablations.

View Article and Find Full Text PDF

In this paper, a semi-automatic segmentation method for volume assessment of Intestinal-type adenocarcinoma (ITAC) is presented and validated. The method is based on a Gaussian hidden Markov random field (GHMRF) model that represents an advanced version of a finite Gaussian mixture (FGM) model as it encodes spatial information through the mutual influences of neighboring sites. To fit the GHMRF model an expectation maximization (EM) algorithm is used.

View Article and Find Full Text PDF

The purpose of this work was to validate a subtraction method for dynamic contrast-enhanced magnetic resonance volumes acquired at portal and delayed (3 hours) phases, to obtain a better depiction and delineation of hepatic secondary lesions. As the clinical readability of subtraction images depends on the degree of co-registration between volumes, we applied a 3D non-rigid registration procedure to realign portal and delayed-phase volumes before subtraction. Our method combines a rigid registration, based on Normalized Mutual Information maximization and a non-rigid registration, based on a multiresolution analysis performed through Wavelet Transform.

View Article and Find Full Text PDF

Background: Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction.

View Article and Find Full Text PDF