: Hereditary polyposis syndromes are clinically and genetically heterogeneous conditions associated with increased colorectal cancer risk. They are classified based on polyp histology, inheritance mode, causal gene, and colonic and extracolonic manifestations. Their diagnosis is challenging due to overlapping and heterogeneous clinical presentations.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
November 2024
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM).
View Article and Find Full Text PDFThe minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy.
View Article and Find Full Text PDFColorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer.
View Article and Find Full Text PDFBackground: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (, , , , , , , , , , , ) involved in PDAC susceptibility.
View Article and Find Full Text PDFClassic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.
View Article and Find Full Text PDFBackground: Activation of the Wnt pathway has been linked to colorectal cancer (CRC). Previous reports suggest that Wnt3a can activate p38. Besides, p38α feeds into the canonical Wnt/β-catenin pathway by inhibiting GSK3β through phosphorylation.
View Article and Find Full Text PDFCells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response.
View Article and Find Full Text PDFComput Struct Biotechnol J
October 2023
SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their binding affinity to SMYD3 and then used as probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark.
View Article and Find Full Text PDFLynch syndrome (LS) is an inherited cancer susceptibility syndrome caused by germline mutations in a DNA mismatch repair (MMR) gene or in the gene. LS is associated with an increased lifetime risk of colorectal cancer (CRC) and other malignancies. The screening algorithm for LS patient selection is based on the identification of CRC specimens that have MMR loss/high microsatellite instability (MSI-H) and are wild-type for .
View Article and Find Full Text PDFGastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair.
View Article and Find Full Text PDFGastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.gendis.
View Article and Find Full Text PDFc-MYC is one of the most important factors involved in colorectal cancer (CRC) initiation and progression; indeed, it is found to be upregulated in up to 80% of sporadic cases. During colorectal carcinogenesis, c-MYC is maintained upregulated through β-catenin-mediated transcriptional activation and ERK-mediated post-translational stabilization. Our data demonstrate that p38α, a kinase involved in CRC metabolism and survival, contributes to c-Myc protein stability.
View Article and Find Full Text PDFRecent findings support the hypothesis that inhibition of SMYD3 methyltransferase may be a therapeutic avenue for some of the deadliest cancer types. Herein, active site-selective covalent SMYD3 inhibitors were designed by introducing an appropriate reactive cysteine trap into reversible first-generation SMYD3 inhibitors. The 4-aminopiperidine derivative EM127 (11C) bearing a 2-chloroethanoyl group as reactive warhead showed selectivity for Cys186, located in the substrate/histone binding pocket.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2022
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their binding affinity to SMYD3 and then used as probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors.
View Article and Find Full Text PDFGenetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the gene have been previously identified in patients with hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer.
View Article and Find Full Text PDFThe prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK.
View Article and Find Full Text PDF