The rapid response of neutrophils throughout the body to a systemic challenge is a critical first step in resolution of bacterial infection such as (). Here we delineated the dynamics of this response, revealing novel insights into the molecular mechanisms using lung and spleen intravital microscopy and 3D culture of living precision cut splenic slices in combination with fluorescent labelling of endogenous leukocytes. Within seconds after challenge, intravascular marginated neutrophils and lung endothelial cells (ECs) work cooperatively to capture pathogens.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2020
Neutrophils are the most abundant circulating leukocyte within the blood stream and for many years the dogma has been that these cells migrate rapidly into tissues in response to injury or infection, forming the first line of host defense. While it has previously been documented that neutrophils marginate within the vascular beds of the lung and liver and are present in large numbers within the parenchyma of tissues, such as spleen, lymph nodes, and bone marrow (BM), the function of these tissue resident neutrophils under homeostasis, in response to pathogen invasion or injury has only recently been explored, revealing the unexpected role of these cells as immunoregulators or immune helpers and also unraveling their heterogeneity and plasticity. Neutrophils are highly motile cells and the use of intravital microscopy (IVM) to image cells within their environment with little manipulation has dramatically increased our understanding of the function, migratory behavior, and interaction of these short-lived cells with other innate and adaptive immune cells.
View Article and Find Full Text PDFTreatment with the CXCR4 antagonist, plerixafor (AMD3100), has been proposed for clinical use in patients with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome and in pulmonary fibrosis. However, there is controversy with respect to the impact of plerixafor on neutrophil dynamics in the lung, which may affect its safety profile. In this study, we investigated the kinetics of endogenous neutrophils by direct imaging, using confocal intravital microscopy in mouse bone marrow, spleen, and lungs.
View Article and Find Full Text PDFEur J Clin Invest
November 2018
Background: Chemokines play a critical role in orchestrating the distribution and trafficking of neutrophils in homeostasis and disease.
Results: The CXCR4/CXCL12 chemokine axis has been identified as a central regulator of these processes.
Conclusion: In this review, we focus on the role of CXCR4/CXCL12 chemokine axis in regulating neutrophil release from the bone marrow and the trafficking of senescent neutrophils back to the bone marrow for clearance under homeostasis and disease.
Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions.
View Article and Find Full Text PDFThe S100A8/A9 heterodimer is abundantly expressed by myeloid cells, especially neutrophils, but its mechanism of action is only partially determined. In this study we investigated S100A8/A9 involvement in the host response to Streptococcus pneumoniae infection making use of S100a9(-/-) mice that lack heterodimer expression in myeloid cells. S100a9(-/-) mice that were infected intranasally with pneumococci rapidly succumbed, with 80% mortality after 48 h, whereas the majority of wild-type mice recovered.
View Article and Find Full Text PDFNeutrophil recruitment is an important early step in controlling tissue infections or injury. Here, we report that this influx depends on both tissue-resident mast cells and macrophages. Mice with mast cell deficiency recruit reduced numbers of neutrophils in the first few hours of intraperitoneal lipopolysaccharide (LPS) stimulation.
View Article and Find Full Text PDFNeutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection.
View Article and Find Full Text PDFEmergency mobilization of neutrophil granulocytes (neutrophils) from the bone marrow (BM) is a key event of early cellular immunity. The hematopoietic cytokine granulocyte-colony stimulating factor (G-CSF) stimulates this process, but it is unknown how individual neutrophils respond in situ. We show by intravital 2-photon microscopy that a systemic dose of human clinical-grade G-CSF rapidly induces the motility and entry of neutrophils into blood vessels within the tibial BM of mice.
View Article and Find Full Text PDFA successful immune response depends on the capacity of immune cells to travel from one location in the body to another--these cells are rapid migrators, travelling at speeds of microm/minute. Their ability to penetrate into tissues and to make contacts with other cells depends chiefly on the beta2 integrin known as LFA-1. For this reason, we describe the control of its activity in some detail.
View Article and Find Full Text PDFNeutrophils are the first immune cells to migrate into infected tissue sites. Therefore an important step in the initiation of an immune response is the synthesis of the neutrophil-recruiting chemokines. In this in vivo study in mice, we show that resident tissue macrophages are the source of the major neutrophil chemoattractants, KC and MIP-2.
View Article and Find Full Text PDFAP-2 proteins are a family of developmentally-regulated transcription factors. They are encoded by five different genes (alpha, beta, gamma, delta, and epsilon) but they share a common structure. AP-2 plays relevant roles in growth, differentiation, and adhesion by controlling the transcription of specific genes.
View Article and Find Full Text PDF