Publications by authors named "Katia Cosentino"

Pyroptosis mediated by gasdermins (GSDMs) plays crucial roles in infection and inflammation. Pyroptosis triggers the release of inflammatory molecules, including damage-associated molecular patterns (DAMPs). However, the consequences of pyroptosis-especially beyond interleukin (IL)-1 cytokines and DAMPs-that govern inflammation are poorly defined.

View Article and Find Full Text PDF

Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane.

View Article and Find Full Text PDF

Gasdermin D (GSDMD) is a pore-forming protein that perforates the plasma membrane (PM) during pyroptosis, a pro-inflammatory form of cell death, to induce the unconventional secretion of inflammatory cytokines and, ultimately, cell lysis. GSDMD is activated by protease-mediated cleavage of its active N-terminal domain from the autoinhibitory C-terminal domain. Inflammatory caspase-1, -4/5 are the main activators of GSDMD via either the canonical or non-canonical pathways of inflammasome activation, but under certain stimuli, caspase-8 and other proteases can also activate GSDMD.

View Article and Find Full Text PDF

Single molecule fluorescence microscopy has the unique advantage to provide real-time information on the spatiotemporal assembly of individual protein complexes in cellular membranes. This includes the assembly of proteins into oligomer species of numerous copy numbers. However, there is a need for improved tracing analysis of the real-time growth kinetics of these assemblies in cells with single molecule resolution.

View Article and Find Full Text PDF

Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death.

View Article and Find Full Text PDF

Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress.

View Article and Find Full Text PDF

During macroautophagy/autophagy, precursor cisterna known as phagophores expand and sequester portions of the cytoplasm and/or organelles, and subsequently close resulting in double-membrane transport vesicles called autophagosomes. Autophagosomes fuse with lysosomes/vacuoles to allow the degradation and recycling of their cargoes. We previously showed that sequential binding of yeast Atg2 and Atg18 to Atg9, the only conserved transmembrane protein in autophagy, at the extremities of the phagophore mediates the establishment of membrane contact sites between the phagophore and the endoplasmic reticulum.

View Article and Find Full Text PDF

BAX and BAK are key apoptosis regulators that mediate the decisive step of mitochondrial outer membrane permeabilization. However, the mechanism by which they assemble the apoptotic pore remains obscure. Here, we report that BAX and BAK present distinct oligomerization properties, with BAK organizing into smaller structures with faster kinetics than BAX.

View Article and Find Full Text PDF

Analysis of single-molecule brightness allows subunit counting of high-order oligomeric biomolecular complexes. Although the theory behind the method has been extensively assessed, systematic analysis of the experimental conditions required to accurately quantify the stoichiometry of biological complexes remains challenging. In this work, we develop a high-throughput, automated computational pipeline for single-molecule brightness analysis that requires minimal human input.

View Article and Find Full Text PDF

Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes.

View Article and Find Full Text PDF

Motivation: Imaging single molecules has emerged as a powerful characterization tool in the biological sciences. The detection of these under various noise conditions requires the use of algorithms that are dependent on the end-user inputting several parameters, the choice of which can be challenging and subjective.

Results: In this work, we propose DeepSinse, an easily trainable and useable deep neural network that can detect single molecules with little human input and across a wide range of signal-to-noise ratios.

View Article and Find Full Text PDF

Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids.

View Article and Find Full Text PDF

Amphiphilic maleic acid-containing polymers allow for the direct extraction of membrane proteins into stable, homogenous, water-soluble copolymer/lipid nanoparticles without the use of detergents. By adjusting the polymer/lipid ratio, the size of the nanoparticles can be tuned at convenience for the incorporation of protein complexes of different size. However, an increase in the size of the lipid nanoparticles may correlate with increased sample heterogeneity, thus hampering their application to spectroscopic and structural techniques where highly homogeneous samples are desirable.

View Article and Find Full Text PDF

Permeabilization of the mitochondrial outer membrane is a key step in the intrinsic apoptosis pathway, triggered by the release of mitochondrial intermembrane space proteins into the cytoplasm. The BCL-2-associated X apoptosis regulator (BAX) protein critically contributes to this process by forming pores in the mitochondrial outer membrane. However, the relative roles of the mitochondrial residence of BAX and its oligomerization in promoting membrane permeabilization are unclear.

View Article and Find Full Text PDF

BFL1 is a relatively understudied member of the BCL2 protein family which has been implicated in the pathogenesis and chemoresistance of a variety of human cancers, including hematological malignancies and solid tumours. BFL1 is generally considered to have an antiapoptotic function, although its precise mode of action remains unclear. By quantitatively analyzing BFL1 action in synthetic membrane models and in cells, we found that BFL1 inhibits apoptosis through three distinct mechanisms which are similar but not identical to those of BCLXL, the paradigmatic antiapoptotic BCL2 family protein.

View Article and Find Full Text PDF

FGF2 is exported from cells by an unconventional secretory mechanism. Here, we directly visualized individual FGF2 membrane translocation events at the plasma membrane using live cell TIRF microscopy. This process was dependent on both PI(4,5)P-mediated recruitment of FGF2 at the inner leaflet and heparan sulfates capturing FGF2 at the outer plasma membrane leaflet.

View Article and Find Full Text PDF

The mechanism whereby mitochondrial DNA (mtDNA) is released into the cytosol and activates the cGAS/STING inflammatory pathway during Bax/Bax‐mediated apoptosis is unknown. In this issue, Riley (2018) report that widening of Bax and Bak pores on the mitochondrial outer membrane (MOM) during apoptosis allows the extrusion of the mitochondrial inner membrane (MIM) into the cytosol and its permeabilization to release mtDNA independently of caspases. In this scenario, Bax and Bak emerge as key modulators of the apoptotic immunogenic response.

View Article and Find Full Text PDF

Bax and its homolog Bak are key regulators of the mitochondrial pathway of apoptosis. On cell stress Bax and Bak accumulate at distinct foci on the mitochondrial surface where they undergo a conformational change, oligomerize, and mediate cytochrome c release, leading to cell death. The molecular mechanisms of Bax and Bak assembly and mitochondrial permeabilization have remained a longstanding question in the field.

View Article and Find Full Text PDF

Bcl-2 proteins are key regulators of the mitochondrial outer membrane (MOM) permeabilization that mediates apoptosis. During apoptosis, Bid is cleaved (cBid) and translocates to the MOM, where it activates Bax. Bax then oligomerizes and induces MOM permeabilization.

View Article and Find Full Text PDF

Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual-color single-molecule localization-based super-resolution microscopy.

View Article and Find Full Text PDF

Pore forming proteins (PFPs) share the ability of creating pores that allow the passage of ions, proteins or other constituents through a wide variety of target membranes, ranging from bacteria to humans. They often cause cell death, as pore formation disrupts the membrane permeability barrier required for maintaining cell homeostasis. The organization into supramolecular complexes or oligomers that pierce the membrane is a common feature of PFPs.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes.

View Article and Find Full Text PDF

Bax is a key regulator of apoptosis that mediates the release of cytochrome c to the cytosol via oligomerization in the outer mitochondrial membrane before pore formation. However, the molecular mechanism of Bax assembly and regulation by other Bcl-2 members remains obscure. Here, by analysing the stoichiometry of Bax oligomers at the single-molecule level, we find that Bax binds to the membrane in a monomeric state and then self-assembles in <1 min.

View Article and Find Full Text PDF

The nonthermal biological effects of millimeter waves have been mainly attributed to the interaction with biological membranes. Several data on biomimetic membrane systems seem to support this conclusion. In this paper a mechanistic hypothesis is evaluated to explain such an interaction taking into account experimental NMR data on deuterium-labeled phospholipid vesicles.

View Article and Find Full Text PDF