Publications by authors named "Katia Beider"

RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene.

View Article and Find Full Text PDF

Background And Aims: Widespread dysregulation of long non-coding RNAs [lncRNAs] including a reduction in GATA6-AS1 was noted in inflammatory bowel disease [IBD]. We previously reported a prominent inhibition of epithelial mitochondrial functions in ulcerative colitis [UC]. However, the connection between reduction of GATA6-AS1 expression and attenuated epithelial mitochondrial functions was not defined.

View Article and Find Full Text PDF

Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34 HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR).

View Article and Find Full Text PDF

Background: We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization.

Methods: In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized.

Results: Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.

View Article and Find Full Text PDF

Pleiotropy, which consists of a single gene or allelic variant affecting multiple unrelated traits, is common across cancers, with evidence for genome-wide significant loci shared across cancer and noncancer traits. This feature is particularly relevant in multiple myeloma (MM) because several susceptibility loci that have been identified to date are pleiotropic. Therefore, the aim of this study was to identify novel pleiotropic variants involved in MM risk using 28 684 independent single nucleotide polymorphisms (SNPs) from GWAS Catalog that reached a significant association (P < 5 × 10 ) with their respective trait.

View Article and Find Full Text PDF

Despite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy.

View Article and Find Full Text PDF

CRISPR-Cas technology has revolutionized gene editing, but concerns remain due to its propensity for off-target interactions. This, combined with genotoxicity related to both CRISPR-Cas9-induced double-strand breaks and transgene delivery, poses a significant liability for clinical genome-editing applications. Current best practice is to optimize genome-editing parameters in preclinical studies.

View Article and Find Full Text PDF

Heparanase is an endo-β-glucuronidase that is best known for its pro-cancerous effects but is also implicated in the pathogenesis of various viruses. Activation of heparanase is a common strategy to increase viral spread and trigger the subsequent inflammatory cascade. Using a Single Nucleotide Polymorphisms (SNP)-associated approach we identified enhancer and insulator regions that regulate HPSE expression.

View Article and Find Full Text PDF

There is overwhelming epidemiologic evidence that the risk of multiple myeloma (MM) has a solid genetic background. Genome-wide association studies (GWAS) have identified 23 risk loci that contribute to the genetic susceptibility of MM, but have low individual penetrance. Combining the SNPs in a polygenic risk score (PRS) is a possible approach to improve their usefulness.

View Article and Find Full Text PDF

The HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs.

View Article and Find Full Text PDF

Telomeres are involved in processes like cellular growth, chromosomal stability, and proper segregation to daughter cells. Telomere length measured in leukocytes (LTL) has been investigated in different cancer types, including multiple myeloma (MM). However, LTL measurement is prone to heterogeneity due to sample handling and study design (retrospective vs.

View Article and Find Full Text PDF

We present three patients with aggressive non-Hodgkin's B-cell lymphoma (NHL) who received anti-CD19 chimeric antigen receptor T (CAR T) cells therapy after failure of several lines of chemotherapy that developed pseudo-progression. One-week clinical and radiological findings were consistent with tumor progression. Positron emission tomography-computed tomography (PET-CT) at 1 month post CAR T cells administration was consistent with treatment response.

View Article and Find Full Text PDF

Background: Chemoresistance remains a major treatment obstacle in multiple myeloma (MM). Novel new therapies are thus in need. Transient Receptor Potential Vanilloid type 1 (TRPV1) is a calcium-permeable ion channel that has been demonstrated to be expressed in solid tumors.

View Article and Find Full Text PDF

We evaluated the association between germline genetic variants located within the 3'-untranlsated region (polymorphic 3'UTR, ie, p3UTR) of candidate genes involved in multiple myeloma (MM). We performed a case-control study within the International Multiple Myeloma rESEarch (IMMEnSE) consortium, consisting of 3056 MM patients and 1960 controls recruited from eight countries. We selected p3UTR of six genes known to act in different pathways relevant in MM pathogenesis, namely KRAS (rs12587 and rs7973623), VEGFA (rs10434), SPP1 (rs1126772), IRF4 (rs12211228) and IL10 (rs3024496).

View Article and Find Full Text PDF
Article Synopsis
  • Panobinostat, a pan-histone deacetylase inhibitor, shows promise in treating multiple myeloma (MM) but is ineffective alone, leading this study to explore the mechanisms of MM's resistance.
  • The study found that lower levels of the CXCR4 chemokine receptor made MM cells more sensitive to panobinostat, while increased CXCR4 levels contributed to resistance due to activation of the mTOR survival pathway.
  • Combining panobinostat with the mTOR inhibitor everolimus not only overcame this resistance but also enhanced cell death and targeted resistant MM cells effectively in vivo, suggesting a new therapeutic strategy for treating the disease.
View Article and Find Full Text PDF

CD56 natural killer (NK) cells play an important role in the pathogenesis of graft-vs. -host disease (GVHD) and immune defense in the early period after allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP) as an immunomodulating therapy has been widely used for GVHD treatment.

View Article and Find Full Text PDF

Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs.

View Article and Find Full Text PDF

The chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1/CXCL12) are important players in the cross-talk among lymphoma, myeloma and leukemia cells and their microenvironments. In hematological malignancies and solid tumors, the overexpression of CXCR4 on the cell surface has been shown to be responsible for disease progression, increasing tumor cell survival and chemoresistance and metastasis to organs with high CXCL12 levels (e.g.

View Article and Find Full Text PDF

Failure to precisely repair DNA damage in self-renewing Hematopoietic Stem and early Progenitor Cells (HSPCs) can disrupt normal hematopoiesis and promote leukemogenesis. Although HSPCs are widely considered a target of ionizing radiation (IR)-induced hematopoietic injury, definitive data regarding cell death, DNA repair, and genomic stability in these rare quiescent cells are scarce. We found that irradiated HSPCs, but not lineage-committed progenitors (CPs), undergo rapid ATM-dependent apoptosis, which is suppressed upon interaction with bone-marrow stroma cells.

View Article and Find Full Text PDF

CXCR4 expression in neuroblastoma tumors correlates with disease severity. In this study, we describe mechanisms by which CXCR4 signaling controls neuroblastoma tumor growth and response to therapy. We found that overexpression of CXCR4 or stimulation with CXCL12 supports neuroblastoma tumorigenesis.

View Article and Find Full Text PDF

Polyclonal anti-human thymocyte globulins (ATG) have been recently shown to significantly reduce the incidence of graft versus host disease (GVHD) post allogeneic stem cell transplantation (HSCT) from both sibling and unrelated donors. Induction of regulatory T cells has been suggested as one of the possible mechanisms. The aim of current study was to further characterize the T cell populations induced by ATG treatment and to delineate the mechanisms involved in ATG-induced tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated BL-8040, a high-affinity CXCR4 antagonist, as a monotherapy to mobilize CD34 cells in healthy volunteers, demonstrating it is safe and well-tolerated at doses from 0.5 to 1 mg/kg.
  • In the first phase, BL-8040 significantly increased the mobilization of white blood cells and CD34 cells, with counts peaking four hours post-injection.
  • The second phase showed that the collected graft was rich in immune cells, indicating BL-8040's effectiveness for one-day procedures in allogeneic hematopoietic stem and progenitor cell transplantation.
View Article and Find Full Text PDF

To explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the sphingosine-1-phosphate (S1P) pathways in multiple myeloma (MM) cells and to evaluate the effect of S1P targeting with the FTY720 modulator as a potential anti-MM therapeutic strategy. S1P targeting with FTY720 induces MM cell apoptosis. The combination of FTY720 with the SPHK1 inhibitor SKI-II results in synergistic inhibition of MM growth.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a type of cancer that affects plasma cells in the bone marrow and is linked to the production of abnormal proteins known as M proteins.
  • Genetic factors, particularly single nucleotide polymorphisms (SNPs) within miRNA-binding sites (miRSNPs), may influence the risk of developing MM by affecting gene regulation.
  • In a study involving nearly 5,000 individuals, researchers identified significant associations between certain SNPs and MM risk, highlighting the potential of miRSNPs in understanding the genetic basis of this disease.
View Article and Find Full Text PDF