Publications by authors named "Kati Stranius"

As structure defined cutouts of the graphene lattice, nanographene molecules have gained plenty of attention because of their high potential for versatile applications in organic electronics and energy conversion devices and as ideal model systems for the better understanding of intrinsic structure-property correlations of graphenes. In this study, well-defined nanographenes with sp carbon networks of different sizes, hexa--hexabenzocoronene (HBC) and its rectangularly π-extended version, a short graphene nanoribbon (GNR), have been covalently functionalized with photoactive porphyrin molecules. On the basis of their spectroscopic studies, the photodynamics of the porphyrin-linked nanographenes was found to be influenced substantially by the size of the nanographenes.

View Article and Find Full Text PDF

Liquid chromophores constitute a rare but intriguing class of molecules that are in high demand for the design of luminescent inks, liquid semiconductors, and solar energy storage materials. The most common way to achieve liquid chromophores involves the introduction of long alkyl chains, which, however, significantly reduces the chromophore density. Here, strategy is presented that allows for the preparation of liquid chromophores with a minimal increase in molecular weight, using the important class of perylenes as an example.

View Article and Find Full Text PDF

Strong coupling between light and matter leads to the spontaneous formation of hybrid light-matter states, having different energies than the uncoupled states. This opens up for new ways of modifying the energy landscape of molecules without changing their atoms or structure. Heavy metal-free organic light emitting diodes (OLED) use reversed intersystem crossing (RISC) to harvest light from excited triplet states.

View Article and Find Full Text PDF

Altered lipid metabolism and extensive lipid storage in cells have been associated with various medical disorders, including cancer. The development of fluorescent probes that specifically accumulate in lipid deposits is therefore of great interest in order to study pathological processes that are linked to dysregulated lipogenesis. In the present study, we present a small fluorescent benzothiadiazole dye that specifically stains lipid droplets in living and fixated cells.

View Article and Find Full Text PDF

The self-assembled monolayer (SAM) technique was employed to fabricate a two-layer donor-acceptor film on the surface of TiO2. The approach is based on using donor and acceptor compounds with anchoring groups of different lengths. The acceptor, a fullerene derivative, has a carboxyl anchor attached to the fullerene moiety via a short linker that places the fullerene close to the surface.

View Article and Find Full Text PDF

In this study we have explored the influence of mutual position of chlorin electron donor and fullerene C60 electron acceptor on photoinduced electron transfer. Two zinc-chlorin-aza-[18]crown-6 compounds and three pyrrolidino[60]fullerenes with alkyl aminium and varying coordinative moieties were synthesized and used for self-assembling of a set of complexes via two-point binding. The aza[18]crown6 moieties were connected to chlorins via amide linker either at 13(4) or 17(4) position, hence, being attached on different sides of the chlorin plane.

View Article and Find Full Text PDF

Three new perylene diimide (PDI)-based ligands have been synthesized by the covalent attachment of dipyrido[a,c]phenazine moiety to one of the bay-positions of PDI, while the second position has been substituted with either a 4-tert-butylphenoxy or a pyrrolidinyl group to obtain two types of chromophores, Ph-PDI and Py-PDI, respectively, with distinct properties. In the case of Py-PDI, the resultant 1,7- and 1,6-regioisomers have been successfully separated by column chromatography and characterized by (1)H NMR spectroscopy. The ligands have been employed to prepare donor-acceptor-based ensembles incorporating the covalently linked PDI and Ru(II) polypyridine complex as the acting chromophores.

View Article and Find Full Text PDF

A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques.

View Article and Find Full Text PDF

Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements.

View Article and Find Full Text PDF

Gold/double-cable copolymer/gold multisegmented nanorods were prepared electrochemically via a template-based method. These "bulk heterojunction" nanorods showed photoconductivity providing us with a platform to study photoinduced charge separation/transport at the nanointerface and begin to think about the rational design of nanoscale solar cells based on such structures.

View Article and Find Full Text PDF

Photoinduced electron transfer reactions of phthalalocyanine-fullerene dyads, in which donor and acceptor moieties are covalently linked to each other, with one or two malonic linkers, were studied. In the dyads with two linkers, phthalocyanine and fullerene have mutual orientations, face-to-face or face-to-tail, which differ from each other and influence photoinduced electron transfer processes. Quantitative spectroscopic and time-resolved spectroscopic measurements were done in polar and non-polar solvents at room temperature and at several reduced temperatures.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Kati Stranius"

  • - Kati Stranius's research primarily focuses on the interactions between light and matter, exploring strong light-matter coupling, photoinduced energy transfer, and the impact of molecular structures on photophysical properties.
  • - Her studies have demonstrated innovative strategies for enhancing chromophore density in liquids using low-melting perylenes and highlighted the selective manipulation of electronically excited states, paving the way for advanced applications in organic electronics and energy conversion.
  • - Additionally, Stranius has contributed to the development of fluorescent probes that selectively target intracellular lipid droplets, reflecting her broader interest in the interplay of photonics and biological systems, especially in relation to metabolic disorders like cancer.