Publications by authors named "Kathy Raven"

Genomic epidemiology enhances the ability to detect and refute methicillin-resistant (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019.

View Article and Find Full Text PDF

Background: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes.

Methods: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium.

View Article and Find Full Text PDF

Genomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) could transform outbreak investigations, but its clinical introduction is hampered by the lack of automated data analysis tools to rapidly and accurately define transmission based on sequence relatedness. We aimed to evaluate a fully automated bioinformatics system for MRSA genome analysis versus a bespoke researcher-led manual informatics pipeline. We analyzed 781 MRSA genomes from 777 consecutive patients identified over a 9-month period in a clinical microbiology laboratory in the United Kingdom.

View Article and Find Full Text PDF

is a ubiquitous opportunistic pathogen that is exhibiting increasing levels of antimicrobial resistance (AMR). Many of the genes that confer resistance and pathogenic functions are localized on mobile genetic elements (MGEs), which facilitate their transfer between lineages. Here, features including resistance determinants, virulence factors and MGEs were profiled in a set of 1273 genomes from two disparate geographic locations (in the UK and Canada) from a range of agricultural, clinical and associated habitats.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) are increasingly being applied to investigate the genetic basis of bacterial traits. However, approaches to perform power calculations for bacterial GWAS are limited. Here we implemented two alternative approaches to conduct power calculations using existing collections of bacterial genomes.

View Article and Find Full Text PDF

Whole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species.

View Article and Find Full Text PDF

Background: Whole-genome sequencing (WGS) can be used in genomic epidemiology investigations to confirm or refute outbreaks of bacterial pathogens, and to support targeted and efficient infection control interventions. We aimed to define a genetic relatedness cutoff, quantified as a number of single-nucleotide polymorphisms (SNP), for meticillin-resistant (MRSA), above which recent (ie, within 6 months) patient-to-patient transmission could be ruled out.

Methods: We did a retrospective genomic and epidemiological analysis of MRSA data from two prospective observational cohort studies in the UK to establish SNP cutoffs for genetic relatedness, above which recent transmission was unlikely.

View Article and Find Full Text PDF

Nosocomial acquisition and transmission of vancomycin-resistant Enterococcus faecium (VREfm) is the driver for E. faecium carriage in hospitalized patients, which, in turn, is a risk factor for invasive infection in immunocompromised patients. In the present study, we provide a comprehensive picture of E.

View Article and Find Full Text PDF

Bacterial sequencing will become increasingly adopted in routine microbiology laboratories. Here, we report the findings of a technical evaluation of almost 800 clinical methicillin-resistant (MRSA) isolates, in which we sought to define key quality metrics to support MRSA sequencing in clinical practice. We evaluated the accuracy of mapping to a generic reference versus clonal complex (CC)-specific mapping, which is more computationally challenging.

View Article and Find Full Text PDF

Objectives: The genetic prediction of phenotypic antibiotic resistance based on analysis of WGS data is becoming increasingly feasible, but a major barrier to its introduction into routine use is the lack of fully automated interpretation tools. Here, we report the findings of a large evaluation of the Next Gen Diagnostics (NGD) automated bioinformatics analysis tool to predict the phenotypic resistance of MRSA.

Methods: MRSA-positive patients were identified in a clinical microbiology laboratory in England between January and November 2018.

View Article and Find Full Text PDF

Genomic surveillance that combines bacterial sequencing and epidemiological information will become the gold standard for outbreak detection, but its clinical translation is hampered by the lack of automated interpretation tools. We performed a prospective pilot study to evaluate the analysis of methicillin-resistant (MRSA) genomes using the Next Gen Diagnostics (NGD) automated bioinformatics system. Seventeen unselected MRSA-positive patients were identified in a clinical microbiology laboratory in England over a period of 2 weeks in 2018, and 1 MRSA isolate per case was sequenced on the Illumina MiniSeq instrument.

View Article and Find Full Text PDF

We examined whether genomic surveillance of Escherichia coli in wastewater could capture the dominant E. coli lineages associated with bloodstream infection and livestock in the East of England, together with the antibiotic-resistance genes circulating in the wider E. coli population.

View Article and Find Full Text PDF

Background: Routine sequencing of MRSA could bring about significant improvements to outbreak detection and investigation. Sequencing is commonly performed using DNA extracted from a pure culture, but overcoming the delay associated with this step could reduce the time to infection control interventions.

Objectives: To develop and evaluate rapid sequencing of MRSA using primary clinical cultures.

View Article and Find Full Text PDF

Vancomycin-resistant (VREfm) is a leading cause of healthcare-associated infection. Reservoirs of VREfm are largely assumed to be nosocomial although there is a paucity of data on alternative sources. Here, we describe an integrated epidemiological and genomic analysis of associated with bloodstream infection and isolated from wastewater.

View Article and Find Full Text PDF

There is growing evidence for the value of bacterial whole-genome sequencing in hospital outbreak investigations. Our aim was to develop methods that support efficient and accurate low-throughput clinical sequencing of methicillin-resistant (MRSA) isolates. Using a test panel of 25 MRSA isolates previously associated with outbreak investigations, we devised modifications to library preparation that reduced the processing time by 1 hour.

View Article and Find Full Text PDF

Livestock have been proposed as a reservoir for drug-resistant that infect humans. We isolated and sequenced 431 isolates (including 155 extended-spectrum β-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 bacteria associated with bloodstream infection in the United Kingdom.

View Article and Find Full Text PDF

Vancomycin-resistant (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom.

View Article and Find Full Text PDF

Bacterial whole-genome sequencing in the clinical setting has the potential to bring major improvements to infection control and clinical practice. Sequencing instruments are not currently available in the majority of routine microbiology laboratories worldwide, but an alternative is to use external sequencing providers. To foster discussion around this we investigated whether send-out services were a viable option.

View Article and Find Full Text PDF

Background: VRE bacteraemia has a high mortality and continues to defy control. Antibiotic risk factors for VRE bacteraemia have not been adequately defined. We aimed to determine the risk factors for VRE bacteraemia focusing on duration of antibiotic exposure.

View Article and Find Full Text PDF

Vancomycin-resistant (VREfm) bloodstream infections are associated with high recurrence rates. This study used genome sequencing to accurately distinguish the frequency of relapse and reinfection in patients with recurrent bacteremia and to investigate strain relatedness in patients with apparent VREfm and vancomycin-susceptible (VSEfm) mixed infection. A retrospective study was performed at the Cambridge University Hospitals NHS Foundation Trust (CUH) between November 2006 and December 2012.

View Article and Find Full Text PDF

Genome sequencing has provided snapshots of the transmission of methicillin-resistant (MRSA) during suspected outbreaks in isolated hospital wards. Scale-up to populations is now required to establish the full potential of this technology for surveillance. We prospectively identified all individuals over a 12-month period who had at least one MRSA-positive sample processed by a routine diagnostic microbiology laboratory in the East of England, which received samples from three hospitals and 75 general practitioner (GP) practices.

View Article and Find Full Text PDF

Background: Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas.

Methods: We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing.

View Article and Find Full Text PDF

Background: Residents of long-term care facilities (LTCF) may have high carriage rates of multidrug-resistant pathogens, but are not currently included in surveillance programmes for antimicrobial resistance or healthcare-associated infections. Here, we describe the value derived from a longitudinal epidemiological and genomic surveillance study of drug-resistant Escherichia coli in a LTCF in the United Kingdom (UK).

Methods: Forty-five of 90 (50%) residents were recruited and followed for six months in 2014.

View Article and Find Full Text PDF

Background: Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of nosocomial infection. Here, we describe the utility of whole-genome sequencing in defining nosocomial VREfm transmission.

Methods: A retrospective study at a single hospital in the United Kingdom identified 342 patients with E.

View Article and Find Full Text PDF