Publications by authors named "Kathy Matuszewska"

Significance: Many commercially available near-infrared (NIR) fluorescence imaging systems lack algorithms for real-time quantifiable fluorescence data. Creation of a workflow for clinical assessment and analysis may provide clinical researchers with a method for intraoperative fluorescence quantification to improve objective outcome measures.

Aim: Scoring systems and verified image analysis are employed to determine the amount and intensity of fluorescence within surgical specimens both intra and postoperatively.

View Article and Find Full Text PDF

Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • A significant number of women with advanced epithelial ovarian cancer (EOC) face weakness and cachexia, leading to higher health risks, yet no prior models have effectively replicated the full range of disease symptoms in adult mice.
  • Researchers developed a new model to study ovarian cancer cachexia by injecting EOC cells in mice, allowing for the observation of metastasis, muscle atrophy, and other related symptoms over time.
  • Results showed that as the cancer progressed, there were substantial increases in tumor size, muscle weakness and atrophy, and inflammation markers, although there was a surprising partial restoration of muscle force in certain muscles despite the ongoing disease.
View Article and Find Full Text PDF

Objectives: A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice.

View Article and Find Full Text PDF

Immunotherapies revive host immune responses against tumors by stimulating innate and adaptive immune effector cells with antitumor functions. Thus, detailed studies of immunological cell phenotypes and functions within the tumor microenvironment (TME) following immunotherapy treatments is critical to identifying the determinants of therapeutic success, optimizing treatment regimens, and driving curative outcomes. Oncolytic viruses such as Orf virus (OrfV) are multifunctional biologics that preferentially infect and kill cancer cells while simultaneously causing inflammation that drives anticancer immune responses.

View Article and Find Full Text PDF

Ovarian cancers exhibit high rates of recurrence and poor treatment response. Preclinical models that recapitulate human disease are critical to develop new therapeutic approaches. Syngeneic mouse models allow for the generation of tumours comprising the full repertoire of non-malignant cell types but have expanded in number, varying in the cell type of origin, method for transformation, and ultimately, the properties of the tumours they produce.

View Article and Find Full Text PDF

Objective: To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer.

Methods: An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion.

View Article and Find Full Text PDF

Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance.

View Article and Find Full Text PDF

Background: Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma.

View Article and Find Full Text PDF

Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse.

View Article and Find Full Text PDF

Objectives: Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC).

View Article and Find Full Text PDF

To develop a digital algorithm for quantitative assessment of surface methylene blue staining in whole lymph nodes and validate a semi-quantitative visual scoring method for patient-side use. Lymph nodes from canine patients with spontaneous tumors undergoing sentinel lymph node mapping were prospectively assessed and photographed. Using an open-source computer-based imaging software, an algorithm was developed for quantification of staining based on a signal-to-background ratio.

View Article and Find Full Text PDF

A basic requirement of tumorigenesis is the development of a vascular network to support the metabolic requirements of tumor growth and metastasis. Tumor vascular formation is regulated by a balance between promoters and inhibitors of angiogenesis. Typically, the pro-angiogenic environment created by the tumor is extremely aggressive, resulting in the rapid vessel formation with abnormal, dysfunctional morphology.

View Article and Find Full Text PDF

In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses.

View Article and Find Full Text PDF

An integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus.

View Article and Find Full Text PDF

Purpose: Intravenous delivery of oncolytic viruses often leads to tumor vascular shutdown, resulting in decreased tumor perfusion and elevated tumor hypoxia. We hypothesized that using 3TSR to normalize tumor vasculature prior to administration of an oncolytic Newcastle disease virus (NDV) would enhance virus delivery and trafficking of immunologic cell subsets to the tumor core, resulting in systemically enhanced immunotherapy and regression of advanced-stage epithelial ovarian cancer (EOC).

Experimental Design: Using an orthotopic, syngeneic mouse model of advanced-stage EOC, we pretreated mice with 3TSR (4 mg/kg per day) alone or followed by combination with fusogenic NDV(F3aa) (1.

View Article and Find Full Text PDF