Background: Antibody-mediated hyperacute and acute graft rejection are major obstacles in achieving long-term graft survival in xenotransplantation. It is well documented that regulatory T (Treg) cells play a very important role in regulating immune responses to self and non-self antigens. Our previous studies have shown that TCRalphabeta+CD3+CD4-CD8- (double negative, DN)-Treg cells can suppress anti-donor T-cell responses and prolong graft survival in allo- and xenotransplantation models.
View Article and Find Full Text PDFBone marrow (BM) transplantation is an efficient approach to develop donor-specific tolerance and prevent chronic rejection. Allogeneic BM transplantation is limited by donor T cell-mediated graft-versus-host disease, requirement of cytoreduction and high numbers of BM cells. In addition of these drawbacks, recent studies demonstrate that not only T cells, but also NK cells can mediate BM rejection, and long-term mixed chimerism depends on NK cell tolerance.
View Article and Find Full Text PDFThe ability to control the response of B cells is of particular interest in xenotransplantation as Ab-mediated hyperacute and acute xenograft rejection are major obstacles in achieving long-term graft survival. Regulatory T cells have been proven to play a very important role in the regulation of immune responses to self or non-self Ags. Previous studies have shown that TCRalphabeta+CD3+CD4-CD8- (double-negative (DN)) T cells possess an immune regulatory function, capable of controlling antidonor T cell responses in allo- and xenotransplantation through Fas-Fas ligand interaction.
View Article and Find Full Text PDF