Publications by authors named "Kathy L Frees"

Purpose: De novo variants (DNVs) are a well-recognized cause of genetic disorders. The contribution of DNVs to hearing loss (HL) is poorly characterized. We aimed to evaluate the rate of DNVs in HL-associated genes and assess their contribution to HL.

View Article and Find Full Text PDF

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses.

View Article and Find Full Text PDF

: Usher syndrome is the most common hereditary syndrome combining deafness and blindness. In the 2017 National Child Count of Children and Youth who are Deaf-Blind, Usher syndrome represented 329 of 10,000 children, but there were also at least 70 other etiologies of deaf-blindness documented. The purpose of this study was to analyze the work-up and ultimate diagnoses of 21 consecutive families who presented to the Genetic Eye-Ear Clinic (GEEC) at the University of Iowa.

View Article and Find Full Text PDF

Hearing loss is the most common sensory deficit in humans, affecting 1 in 500 newborns. Due to its genetic heterogeneity, comprehensive diagnostic testing has not previously been completed in a large multiethnic cohort. To determine the aggregate contribution inheritance makes to non-syndromic hearing loss, we performed comprehensive clinical genetic testing with targeted genomic enrichment and massively parallel sequencing on 1119 sequentially accrued patients.

View Article and Find Full Text PDF

Background: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare.

View Article and Find Full Text PDF

Background: Copy number variants (CNVs) are a well-recognized cause of genetic disease; however, methods for their identification are often gene-specific, excluded as 'routine' in screens of genetically heterogeneous disorders, and not implemented in most next-generation sequencing pipelines. For this reason, the contribution of CNVs to non-syndromic hearing loss (NSHL) is most likely under-recognized. We aimed to incorporate a method for CNV identification as part of our standard analysis pipeline and to determine the contribution of CNVs to genetic hearing loss.

View Article and Find Full Text PDF

Atypical hemolytic uremic syndrome (aHUS) is characterized by acute renal failure, thrombocytopenia and microangiopathic hemolytic anemia, and occurs with an estimated incidence in the USA of 2 per 1,000,000. Disease pathogenesis is related to dysregulation of the alternative pathway (AP) of the complement cascade at the level of the cell membrane secondary to mutations in a number of complement genes including complement factor H (CFH), complement factor H-related 5 (CFHR5), complement factor I (CFI), CD46 (MCP), complement factor B (CFB), complement component 3 (C3) and thrombomodulin (THBD). Since aHUS is rare, mutation rate data in large patient cohorts are scarce.

View Article and Find Full Text PDF

Background: Septic shock remains a significant health concern worldwide, and despite progress in understanding the physiological and molecular basis of septic shock, the high mortality rate of patients with septic shock remains unchanged. We recently identified a common polymorphism in toll-like receptor 4 (TLR4) that is associated with hyporesponsiveness to inhaled endotoxin or lipopolysaccharide in humans.

Methods: Since TLR4 is a major receptor for lipopolysaccharide in mammals and gram-negative bacteria are the prevalent pathogen associated with septic shock, we investigated whether these specific TLR4 alleles are associated with a predisposition to a more severe disease outcome for patients with septic shock.

View Article and Find Full Text PDF