Publications by authors named "Kathy Foxx"

Accumulation of lipid-laden (foam) cells in the arterial wall is known to be the earliest step in the pathogenesis of atherosclerosis. There is almost no doubt that atherogenic modified low-density lipoproteins (LDL) are the main sources of accumulating lipids in foam cells. Atherogenic modified LDL are taken up by arterial cells, such as macrophages, pericytes, and smooth muscle cells in an unregulated manner bypassing the LDL receptor.

View Article and Find Full Text PDF

Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL.

View Article and Find Full Text PDF

Background: A hallmark of atherosclerosis is its complex pathogenesis, which is dependent on altered cholesterol metabolism and inflammation. Both arms of pathogenesis involve myeloid cells. Monocytes migrating into the arterial walls interact with modified low-density lipoprotein (LDL) particles, accumulate cholesterol and convert into foam cells, which promote plaque formation and also contribute to inflammation by producing proinflammatory cytokines.

View Article and Find Full Text PDF

High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles.

View Article and Find Full Text PDF

In this mini-review, the role of macrophage phenotypes in atherogenesis is considered. Recent studies on distribution of M1 and M2 macrophages in different types of atherosclerotic lesions indicate that macrophages exhibit a high degree of plasticity of phenotype in response to various conditions in microenvironment. The effect of the accumulation of cholesterol, a key event in atherogenesis, on the macrophage phenotype is also discussed.

View Article and Find Full Text PDF