Publications by authors named "Kathy Fange Liu"

Dimethyladenosine transferase 1 (DIMT1) is an RNA -dimethyladenosine (mA) methyltransferase. DIMT1's role in pre-rRNA processing and ribosome biogenesis is critical for cell proliferation. Here, we investigated the minimal number of residues in a positively charged cleft on DIMT1 required for cell proliferation.

View Article and Find Full Text PDF

Myeloid leukemias are heterogeneous cancers with diverse mutations, sometimes in genes with unclear roles and unknown functional partners. PHF6 and PHIP are two poorly-understood chromatin-binding proteins recurrently mutated in acute myeloid leukemia (AML). mutations are associated with poorer outcomes, while was recently identified as the most common selective mutation in Black patients in AML.

View Article and Find Full Text PDF

Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functions remains incomplete. In this study, we demonstrate that a nucleoplasm-localized G679R NSUN2 mutant, linked to intellectual disability, diminishes NSUN2-mediated tRNA m5C in human cell lines and Drosophila.

View Article and Find Full Text PDF

DEAD-box helicases, crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs) whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nanometer-scale RNA-protein clusters (RPCs) that foster their catalytic activities in vitro and in cells. The IDRs are critical for the formation of these RPCs.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the RNA helicase DDX3X, linked to cancer and neurodevelopmental disorders, disrupt its normal RNA unwinding and translation functions.
  • The study finds that certain DDX3X mutants form unique hollow condensates in cells, which are associated with reduced ATPase and RNA release activities due to blockages in their catalytic processes.
  • These condensates also trap wild-type DDX3X/DDX3Y and other important proteins, with wild-type DDX3X promoting more dynamic interactions than its Y-linked counterpart DDX3Y, shedding light on how these variations may influence disease susceptibility based on sex.
View Article and Find Full Text PDF

The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.

View Article and Find Full Text PDF

The X and Y chromosomes play important roles outside of human reproduction; namely, their potential contribution to human sex biases in physiology and disease. While sex biases are often thought to be an effect of hormones and environmental exposures, genes encoded on the sex chromosomes also play a role. Seventeen homologous gene pairs exist on the X and Y chromosomes whose proteins have critical functions in biology, from direct regulation of transcription and translation to intercellular signaling and formation of extracellular structures.

View Article and Find Full Text PDF

Chronic cellular stress has a profound impact on the brain, leading to degeneration and accelerated aging. Recent work has revealed the vital role of RNA modifications, and the proteins responsible for regulating them, in the stress response. In our study, we defined the role of CG14618/dTrmt10A, the Drosophila counterpart of human TRMT10A a N-methylguanosine methyltransferase, on mA regulation and heat stress resilience in the Drosophila brain.

View Article and Find Full Text PDF

DEAD-box helicases, which are crucial for many aspects of RNA metabolism, often contain intrinsically disordered regions (IDRs), whose functions remain unclear. Using multiparameter confocal microscopy, we reveal that sex chromosome-encoded homologous RNA helicases, DDX3X and DDX3Y, form nano-sized RNA-protein clusters (RPCs) that foster their catalytic activities and in cells. The IDRs are critical for the formation of these RPCs.

View Article and Find Full Text PDF

Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells.

View Article and Find Full Text PDF

-methyladenosine (mA) is the most abundant modification on messenger RNAs (mRNAs) and is catalyzed by methyltransferase-like protein 3 (Mettl3). To understand the role of mA in a self-renewing somatic tissue, we deleted in epidermal progenitors in vivo. Mice lacking demonstrate marked features of dysfunctional development and self-renewal, including a loss of hair follicle morphogenesis and impaired cell adhesion and polarity associated with oral ulcerations.

View Article and Find Full Text PDF

Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression.

View Article and Find Full Text PDF

As phase separation is found in an increasing variety of biological contexts, additional challenges have arisen in understanding the underlying principles of condensate formation and function. We spoke with researchers across disciplines about their views on the ever-changing landscape of biomolecular condensates.

View Article and Find Full Text PDF

Several rRNA-modifying enzymes install rRNA modifications while participating in ribosome assembly. Here, we show that 18 rRNA methyltransferase DIMT1 is essential for acute myeloid leukemia (AML) proliferation through a noncatalytic function. We reveal that targeting a positively charged cleft of DIMT1, remote from the catalytic site, weakens the binding of DIMT1 to rRNA and mislocalizes DIMT1 to the nucleoplasm, in contrast to the primarily nucleolar localization of wild-type DIMT1.

View Article and Find Full Text PDF

RNA binding proteins (RBPs) are important players in RNA metabolism and gene regulation. In this issue of , Flamand and colleagues (pp. 1002-1015) developed a new method (TRIBE-STAMP) that detects binding events by two distinct RBPs on single mRNA molecules, which they first applied to the YTHDF family of -methyladenosine (mA) reader proteins.

View Article and Find Full Text PDF

Arthropod-borne viruses, including the alphavirus chikungunya virus (CHIKV), cause acute disease in millions of people and utilize potent mechanisms to antagonize and circumvent innate immune pathways including the type I interferon (IFN) pathway. In response, hosts have evolved antiviral counterdefense strategies that remain incompletely understood. Recent studies have found that long noncoding RNAs (lncRNAs) regulate classical innate immune pathways; how lncRNAs contribute to additional antiviral counterdefenses remains unclear.

View Article and Find Full Text PDF

N-methyladenosine (mA), the most prevalent internal modification on eukaryotic mRNA, plays an essential role in various stress responses. The brain is uniquely vulnerable to cellular stress, thus defining how mA sculpts the brain's susceptibility may provide insight to brain aging and disease-related stress. Here we investigate the impact of mA mRNA methylation in the adult Drosophila brain with stress.

View Article and Find Full Text PDF

The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling.

View Article and Find Full Text PDF

Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive.

View Article and Find Full Text PDF

The study of RNA chemical modifications is currently one of the most rapid-growing fields. Many types of RNA modifications in diverse RNA species have been shown to play versatile roles in a wide array of cellular processes. These modifications are installed and erased by writer and eraser enzymes, respectively.

View Article and Find Full Text PDF

Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications.

View Article and Find Full Text PDF

Dimethyladenosine transferase 1 (DIMT1) is an evolutionarily conserved RNA N-dimethyladenosine (mA) methyltransferase. DIMT1 plays an important role in ribosome biogenesis, and the catalytic activity of DIMT1 is indispensable for cell viability and protein synthesis. A few RNA-modifying enzymes can install the same modification in multiple RNA species.

View Article and Find Full Text PDF

Oxidation of 5-methylcytosine (5mC) in DNA by the ten-eleven translocation (TET) family of enzymes is indispensable for gene regulation in mammals. More recently, evidence has emerged to support a biological function for TET-mediated mC oxidation in messenger RNA. Here, we describe a previously uncharacterized role of TET-mediated mC oxidation in transfer RNA (tRNA).

View Article and Find Full Text PDF

The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site.

View Article and Find Full Text PDF

rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18 rRNA -dimethyladenosine (mA) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant.

View Article and Find Full Text PDF