Publications by authors named "Kathy Busse"

Multiple sclerosis (MS) is associated with alterations in neuroendocrine function, primarily the hypothalamic-pituitary-adrenal axis, including lower expression of the glucocorticoid receptor (GR) and its target genes in peripheral blood mononuclear cells (PBMC) or full blood. We previously found reduced mineralocorticoid receptor (MR) expression in MS patients' peripheral blood. MS is being treated with a widening variety of disease-modifying treatments (DMT), some of which have similar efficacy but different mechanisms of action; body-fluid biomarkers to support the choice of the optimal initial DMT and/or to indicate an unsatisfactory response before clinical activity are unavailable.

View Article and Find Full Text PDF

Background: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions.

Results: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice.

Conclusion: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions.

View Article and Find Full Text PDF

Background: Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown.

Methodology/principal Findings: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR.

View Article and Find Full Text PDF

Human midbrain-derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson's disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors.

View Article and Find Full Text PDF

GABA(A) receptor function is involved in regulating proliferation, migration, and differentiation of rodent neural progenitor cells (NPCs). However, little is known about the molecular composition and functional relevance of GABA(A) receptors in human neural progenitors. Here, we investigated human fetal midbrain-derived NPCs in respect to their GABA(A) receptor function and subunit expression using electrophysiology, calcium imaging, and quantitative real-time PCR.

View Article and Find Full Text PDF

Polyuria, hypernatremia, and hypovolemia are the major clinical signs of inherited nephrogenic diabetes insipidus (NDI). Hypernatremia is commonly considered a secondary sign caused by the net loss of water due to insufficient insertion of aquaporin-2 water channels into the apical membrane of the collecting duct cells. In the present study, we employed transcriptome-wide expression analysis to study gene expression in V2 vasopressin receptor (Avpr2)-deficient mice, an animal model for X-linked NDI.

View Article and Find Full Text PDF

Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx.

View Article and Find Full Text PDF

We have successfully developed a new directed evolution method for generating integral protein fusions comprising of one domain inserted within another. Creating two connections between the insert and accepting parent domain can result in the inter-dependence of the separate protein activities, thus providing a general strategy for constructing molecular switches. Using an engineered transposon termed MuDel, contiguous trinucleotide sequences were removed at random positions from the bla gene encoding TEM-1 beta-lactamase.

View Article and Find Full Text PDF

While the deletion of an amino acid is a common mutation observed in nature, it is generally thought to be disruptive to protein structure. Using a directed evolution approach, we find that the enzyme TEM-1 beta-lactamase was broadly tolerant to the deletion mutations sampled. Circa 73% of the variants analysed retained activity towards ampicillin, with deletion mutations observed in helices and strands as well as regions important for structure and function.

View Article and Find Full Text PDF