Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states.
View Article and Find Full Text PDFThe clinical heterogeneity of asthma suggests that the contribution of genetic variability in candidate gene loci to well-defined phenotypes, such as atopy, may be examined to identify appropriate genetic risk factors for asthma. The gene encoding the cysteinyl leukotriene 2 (CysLT2) receptor has been implicated in atopy since it is localized to a region of chromosome 13q14 that has been linked to atopy in several populations and the cysteinyl leukotrienes are known to activate eosinophils and mast cells in atopy. Accordingly, we analysed the contribution of CysLT2 receptor gene variation to atopy in the inhabitants of Tristan da Cunha, a population characterized by both a founder effect and a 47% prevalence of atopy.
View Article and Find Full Text PDFSrc family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway.
View Article and Find Full Text PDF