Publications by authors named "Kathryne S Brockman"

The use of degradable polymers in vascular tissue regeneration has sparked the need to characterize polymer biocompatibility during degradation. While tissue compatibility has been frequently addressed, studies on polymer hemocompatibility during degradation are limited. The current study evaluated the differences in hemocompatibility (platelet response, complement activation, and coagulation cascade initiation) between as-made and hydrolyzed poly(lactic-co-glycolic) acid (PLGA) and degradable polar hydrophobic ionic polyurethane (D-PHI).

View Article and Find Full Text PDF

Unlabelled: Biomaterial blood compatibility is a complex process that involves four key pathways, including the coagulation cascade, the complement system, platelets, and leukocytes. While many studies have addressed the initial contact of blood with homopolymeric (e.g.

View Article and Find Full Text PDF

Two types of secondary diphosphines, 1,8-(ArPH)2C14H8 (1a: Ar = Tripp, 2,4,6-triisopropylphenyl; 1b: Ar = Mes, 2,4,6-trimethylphenyl) and 1,3-((t)BuPHCH2)2C6H4 (2), based on rigid 1,8-anthracene and flexible m-xylyl frameworks, respectively, have been synthesized using different strategies. Compounds 1a and 1b were formed by nucleophilic aromatic substitution of a potassium organophosphido salt onto 1,8-difluoroanthracene, while compound 2 was obtained by addition of the Grignard reagent [1,3-(ClMgCH2)2C6H4]x to a dichloroorganophosphine, followed by reduction to the diphosphine. These compounds were isolated as ca.

View Article and Find Full Text PDF