Publications by authors named "Kathryn Stowell"

Background: A major bottleneck to the introduction of noninvasive presymptomatic diagnostic tests for the pharmacogenetic disorder malignant hyperthermia is the lack of functional data for associated variants.

Methods: We screened 50 genes having a potential role in skeletal muscle calcium homeostasis using the HaloPlex™ (Agilent Technologies, Santa Clara, CA, USA) target enrichment system and next-generation sequencing. Twenty-one patients with a history of a clinical malignant hyperthermia reaction together with a positive in vitro contracture test were included.

View Article and Find Full Text PDF

The ClinGen malignant hyperthermia susceptibility (MHS) variant curation expert panel specified the American College of Medical Genetics and Genomics/Association of Molecular Pathologists (ACMG/AMP) criteria for RYR1-related MHS and a pilot analysis of 84 variants was published. We have now classified an additional 251 variants for RYR1-related MHS according to current ClinGen standards and updated the criteria where necessary. Criterion PS4 was modified such that individuals with multiple RYR1 variants classified as pathogenic (P), likely pathogenic (LP), or variant of uncertain significance (VUS) were not considered as providing evidence for pathogenicity.

View Article and Find Full Text PDF
Article Synopsis
  • The ClinGen Expert Panel aimed to adapt established pathogenicity criteria for classifying RYR1 variants linked to autosomal dominant malignant hyperthermia (MH), using ACMG/AMP guidelines as a foundation.! -
  • The panel assessed 84 variants, adopting seven criteria unchanged, modifying nine, and discarding ten. Criteria were quantitatively calibrated using a Bayesian approach, showing high odds ratios for specific criteria like PP3 and PM1.! -
  • The new classification yielded results on 44 MH variants, with 29 identified as pathogenic, 13 likely pathogenic, and 2 uncertain, enhancing the understanding of RYR1/MH genomic testing and proving the methodology's applicability for other variant curation contexts.!
View Article and Find Full Text PDF

It is timely to consider the utility and practicability of screening for malignant hyperthermia susceptibility using genomic testing. Here the authors pose a simple, but bold question: what would it take to end deaths from malignant hyperthermia? The authors review recent advances and propose a scientific and clinical pathway toward this audacious goal to provoke discussion in the field.

View Article and Find Full Text PDF

Background: The ryanodine receptor 1 (RyR1) is a major skeletal muscle calcium release channel located in the sarcoplasmic reticulum and involved in excitation-contraction coupling. Variants in the gene encoding RyR1 have been linked to a range of neuromuscular disorders including myopathies and malignant hyperthermia (MH).

Objective: We have identified three RYR1 variants (c.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is an uncommon, autosomal dominant disorder of skeletal muscle, triggered by inhalational anaesthetics or depolarizing muscle relaxants. Masseter muscle rigidity (MMR) can be regarded as potentially a preceding sign for an MH reaction. Susceptibility to MH can be determined by the in vitro contracture test (IVCT) or DNA analysis where a familial variant is known.

View Article and Find Full Text PDF

Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function.

View Article and Find Full Text PDF

Malignant hyperthermia manifests as a rapid and sustained rise in temperature in response to pharmacological triggering agents, e.g. inhalational anesthetics and the muscle relaxant suxamethonium.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is a pharmacogenetic disorder that manifests in susceptible individuals exposed to volatile anaesthetics. Over 400 variants in the ryanodine receptor 1 (RYR1) have been reported but relatively few have been definitively associated with susceptibility to MH. This is largely due to the technical challenges of demonstrating abnormal Ca(2+) release from the sarcoplasmic reticulum.

View Article and Find Full Text PDF

The advent of the polymerase chain reaction and the availability of data from various global human genome projects should make it possible, using a DNA sample isolated from white blood cells, to diagnose rapidly and accurately almost any monogenic condition resulting from single nucleotide changes. DNA-based diagnosis for malignant hyperthermia (MH) is an attractive proposition, because it could replace the invasive and morbid caffeine-halothane/in vitro contracture tests of skeletal muscle biopsy tissue. Moreover, MH is preventable if an accurate diagnosis of susceptibility can be made before general anesthesia, the most common trigger of an MH episode.

View Article and Find Full Text PDF

Background: Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disorder. More than 300 variants in the ryanodine receptor 1 (RYR1) have been associated with MH; however, only 31 have been identified as causative. To confirm a mutation in RYR1 as being causative for MH, segregation of the potential mutation in at least 2 unrelated families with MH susceptibility must be demonstrated and functional assays must show abnormal calcium release compared with wild-type RYR1.

View Article and Find Full Text PDF

Background: Potatoes contain a diverse range of phytochemicals which have been suggested to have health benefits. Metabolite profiling and quantification were conducted on plant extracts made from a white potato cultivar and 'Urenika', a purple potato cultivar traditionally consumed by New Zealand Maori. There is limited published information regarding the metabolite profile of Solanum tuberosum cultivar 'Urenika'.

View Article and Find Full Text PDF

Hemophilia B, or the "royal disease," arises from mutations in coagulation factor IX (F9). Mutations within the F9 promoter are associated with a remarkable hemophilia B subtype, termed hemophilia B Leyden, in which symptoms ameliorate after puberty. Mutations at the -5/-6 site (nucleotides -5 and -6 relative to the transcription start site, designated +1) account for the majority of Leyden cases and have been postulated to disrupt the binding of a transcriptional activator, the identity of which has remained elusive for more than 20 years.

View Article and Find Full Text PDF

Background: Mutations within the gene encoding the skeletal muscle calcium channel ryanodine receptor can result in malignant hyperthermia. Although it is important to characterize the functional effects of candidate mutations to establish a genetic test for diagnosis, ex vivo methods are limited because of the low incidence of the disorder and sample unavailability. More than 250 candidate mutations have been identified, but only a few mutations have been functionally characterized.

View Article and Find Full Text PDF

Adjuvant therapies can incorporate a number of different drugs to minimize the cardiotoxicity of cancer chemotherapy, decrease the development of drug resistance and increase the overall efficacy of the treatment regime. Topoisomerase IIα is a major target of many commonly used anticancer drugs, where cell death is brought about by an accumulation of double-strand DNA breaks. Poly (ADP-ribose) polymerase (PARP)-1 has been extensively studied for its role in the repair of double-strand DNA breaks, but its ability to add highly negative biopolymers (ribosylation) to target proteins provides a vast number of pathways where it can also be important in mediating cell death.

View Article and Find Full Text PDF

A novel murine enzyme, ADP-dependent glucokinase (ADPGK), has been shown to catalyse glucose phosphorylation using ADP as phosphoryl donor. The ancestral ADPGK gene appears to have been laterally transferred from Archaea early in metazoan evolution, but its biological role has not been established. Here, we undertake an initial investigation of the functional properties of human ADPGK in human tumour cell lines and specifically test the hypothesis that ADPGK might prime glycolysis using ADP under stress conditions such as hypoxia.

View Article and Find Full Text PDF

Background: Malignant hyperthermia (MH) is a dominantly inherited skeletal muscle disorder that can cause a fatal hypermetabolic reaction to general anaesthetics. The primary locus of MH (MHS1 locus) in humans is linked to chromosome 19q13.1, the position of the gene encoding the ryanodine receptor skeletal muscle calcium release channel (RyR1).

View Article and Find Full Text PDF

Background: Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is a pharmacogenetic disorder triggered by volatile anesthetics or depolarizing muscle relaxants in predisposed individuals. Exercise or stress-induced MH episodes, in the absence of any obvious pharmacological trigger, have been reported, but these are rare. A considerable effort has taken place over the last two decades to identify mutations associated with MH and characterize their functional effects.

View Article and Find Full Text PDF

Background: Mutations in the skeletal muscle ryanodine receptor gene may result in altered calcium release from sarcoplasmic reticulum stores, giving rise to malignant hyperthermia (MH). MH is a pharmacogenetic skeletal muscle disorder triggered by volatile anesthetics and depolarizing muscle relaxants. Diagnosis of MH is by in vitro contracture testing of quadriceps muscle.

View Article and Find Full Text PDF

High-resolution melting (HRM) allows single-nucleotide polymorphism (SNP) detection/typing using inexpensive generic heteroduplex-detecting double-stranded DNA (dsDNA) binding dyes. Until recently HRM has been a post-PCR process. With the LightCycler 480 System, however, the entire mutation screening process, including post-PCR analysis, can be performed using a single instrument.

View Article and Find Full Text PDF

Glomerella cingulata, which infects a number of different hosts, gains entry to the plant tissue by means of an appressorium. Turgor pressure generated within the appressorium forces a penetration peg through the plant cuticle. A visible lesion forms as the fungus continues to grow within the host.

View Article and Find Full Text PDF

Background: Topoisomerase IIalpha has been shown to be down-regulated in doxorubicin-resistant cell lines. The specificity proteins Sp1 and Sp3 have been implicated in regulation of topoisomerase IIalpha transcription, although the mechanism by which they regulate expression is not fully understood. Sp1 has been shown to bind specifically to both proximal and distal GC elements of the human topoisomerase IIalpha promoter in vitro, while Sp3 binds only to the distal GC element unless additional flanking sequences are included.

View Article and Find Full Text PDF

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000-100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals.

View Article and Find Full Text PDF