Publications by authors named "Kathryn Slowski"

Uridine diphosphate-galactopyranose mutase (UGM), an enzyme found in many eukaryotic and prokaryotic human pathogens, catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf), the latter being used as the biosynthetic precursor of the galactofuranose polymer portion of the mycobacterium cell wall. We report here the synthesis of a sulfonium and selenonium ion with an appended polyhydroxylated side chain. These compounds were designed as transition state mimics of the UGM-catalyzed reaction, where the head groups carrying a permanent positive charge were designed to mimic both the shape and positive charge of the proposed galactopyranosyl cation-like transition state.

View Article and Find Full Text PDF

The synthesis of 1-[5-O-(α-D-galactopyranosyl)-D-glucityl]pyrimidine-2,4(3H)-dione and 1-[(5-O-(β-D-galactopyranosyl)-D-glucityl]pyrimidine-2,4(3H)-dione as non-ionic substrate mimics of UDP-Galp are described. UDP-Galp is a precursor of Galf, which is a primary component of the cell-wall glycans of several microorganisms. The interconversion of UDP-Galp and UDP-Galf is catalyzed by UDP galactopyranose mutase (UGM); its inhibition comprises a mode of compromising the microorganisms.

View Article and Find Full Text PDF

UDP (uridine diphosphate) galactopyranose mutase (UGM) is involved in the cell wall biosynthesis of many pathogenic microorganisms. UGM catalyzes the reversible conversion of UDP-α-D-galactopyranose into UDP-α-D-galactofuranose, with the latter being the precursor of galactofuranose (Galf) residues in cell walls. Glycoconjugates of Galf are essential components in the cell wall of various pathogenic bacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis.

View Article and Find Full Text PDF