The RAISE project assessed whether deep learning could improve early progression-free survival (PFS) prediction in patients with neuroendocrine tumors. Deep learning models extracted features from CT scans from patients in CLARINET (NCT00353496) (n = 138/204). A Cox model assessed PFS prediction when combining deep learning with the sum of longest diameter ratio (SLDr) and logarithmically transformed CgA concentration (logCgA), versus SLDr and logCgA alone.
View Article and Find Full Text PDFThe RAISE project aimed to find a surrogate end point to predict treatment response early in patients with enteropancreatic neuroendocrine tumors (NET). Response heterogeneity, defined as the coexistence of responding and non-responding lesions, has been proposed as a predictive marker for progression-free survival (PFS) in patients with NETs. Computerized tomography scans were analyzed from patients with multiple lesions in CLARINET (NCT00353496; n = 148/204).
View Article and Find Full Text PDFBackground: The need for developing new biomarkers is increasing with the emergence of many targeted therapies. Artificial Intelligence (AI) algorithms have shown great promise in the medical imaging field to build predictive models. We developed a prognostic model for solid tumour patients using AI on multimodal data.
View Article and Find Full Text PDFThe SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity.
View Article and Find Full Text PDF