Publications by authors named "Kathryn Roache-Johnson"

This chapter provides a protocol for a detailed evaluation of phytoplankton and nuisance cyanobacteria with the FlowCam 8400 and the FlowCam Cyano. The chapter includes (i) detailed description of the quality control of fluorescent mode of the FlowCam, (ii) detailing methods for discriminating nuisance cyanobacteria using the FlowCam Cyano, how to set up libraries and classification routines for commonly used classification reports, and (iii) detailing methods for viability staining to quantify LIVE versus DEAD phytoplankton using the FlowCam 8400.

View Article and Find Full Text PDF

Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation.

View Article and Find Full Text PDF

The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity-both in the lab and in the field.

View Article and Find Full Text PDF

Phosphorus (P) availability drives niche differentiation in the most abundant phytoplankter in the oceans, the marine cyanobacterium Prochlorococcus. We compared the molecular response of Prochlorococcus strain MED4 to P starvation in batch culture to P-limited growth in chemostat culture. We also identified an outer membrane porin, PMM0709, which may allow transport of organic phosphorous compounds, rather than phosphate as previously suggested.

View Article and Find Full Text PDF

Recent measurements of natural populations of the marine cyanobacterium Prochlorococcus indicate this numerically dominant phototroph assimilates phosphorus (P) at significant rates in P-limited oceanic regions. To better understand uptake capabilities of Prochlorococcus under different P stress conditions, uptake kinetic experiments were performed on Prochlorococcus MED4 grown in P-limited chemostats and batch cultures. Our results indicate that MED4 has a small cell-specific Vmax but a high specific affinity (αP ) for P, making it competitive with other marine cyanobacteria at low P concentrations.

View Article and Find Full Text PDF