This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects.
View Article and Find Full Text PDFThe ability to decrease the electron/hole recombination rate, and decrease the band gap of titania to allow photoactivity on irradiation with visible light is attracting more and more attention. Here, boron doping of the titania, the deposition of gold nanoparticles, along with a meso-macroporous structure were obtained using a facile agarose gel templating process combined with sol-gel chemistry. The Au/B/TiO(2) nanocomposites were characterized using SEM, TEM, XRD, N(2) gas sorption, diffuse UV-vis, photoluminescence, and SIMS.
View Article and Find Full Text PDFSolid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin casting procedure. This study was carried out with a view of characterizing this popular and well known SC ISE using a series of complementary surface analysis techniques. This work revealed that PEDOT:PSS prevents the separation of an undesirable water layer at the buried interface of this SC ISE due to the high miscibility of water in the hydrophilic PEDOT:PSS layer.
View Article and Find Full Text PDFJ Solid State Electrochem
January 2009
High integrity solid-contact (SC) polymeric ion sensors have been produced by using spin casting and electropolymerization techniques in the preparation of the SC employing the conductive polymer, poly(3-octylthiophene) [POT]. The physical and chemical integrity of the POT SCs have been evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrochemical stability of SC polymeric ion sensors has been investigated using electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFThis study aimed to develop a novel approach for the production of analytically robust and miniaturized polymeric ion sensors that are vitally important in modern analytical chemistry (e.g., clinical chemistry using single blood droplets, modern biosensors measuring clouds of ions released from nanoparticle-tagged biomolecules, laboratory-on-a-chip applications, etc.
View Article and Find Full Text PDFThis paper presents the very first direct structural evidence for the formation of a 100 +/- 10 A water layer in coated-wire polymeric-membrane ion-selective electrodes (ISEs).
View Article and Find Full Text PDFGold nanoparticles were synthesized using agarose as a reducing agent, which gelled to support the gold nanoparticles, then readily functioned as a template to produce a porous, evenly-distributed Au/TiO(2) nano-hybrid.
View Article and Find Full Text PDFIt is shown by x-ray microanalysis that a gradient of total intracellular Ca concentration exists from the outer oral ectoderm to the inner skeletogenic calicoblastic ectoderm in the coral Galaxea fascicularis. This suggests an increase in intracellular Ca stores in relation to calcification. Furthermore, Ca concentration in the fluid-filled space of the extrathecal coelenteron is approximately twice as high as in the surrounding seawater and higher than in the mucus-containing seawater layer on the exterior of the oral ectoderm.
View Article and Find Full Text PDFThe present work reports the tracer diffusion coefficient for (93)Nb in rutile TiO(2) single crystals using secondary ion mass spectrometry (SIMS). The determined tracer diffusion coefficient exhibited the following temperature dependence in air ( p(O2) = 21 kPa) over the range 1073-1573 K: D93(Nb) = (4.7 m2 s(-1))x10(-7+/-0.
View Article and Find Full Text PDFX-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), rotating disc electrode-electrochemical impedance spectroscopy (RDE-EIS) and synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) have been used to study the response mechanism of the mercury(II) chalcogenide ion-selective electrode (ISE) in saline media. XPS and SIMS have shown that the chalcogenide surface is poisoned by silver chloride, or a mixture of silver halides, on continuous exposure to synthetic and real seawater. Significantly, the in-situ SR-GIXRD study demonstrated that electrode fouling in synthetic seawater is linked to the formation of poorly crystalline or amorphous silver chloride, and that the low level of free mercury(II) in a calibration buffer (i.
View Article and Find Full Text PDF